A Review of Distribution Modeling in Ant (Hymenoptera: Formicidae) Biogeographic Studies

Authors

  • Priscila Santos Silva Universidade Estadual de Santa Cruz (UESC), Brazil https://orcid.org/0000-0001-5589-9090
  • Elmo Borges de Azevedo Koch Universidade Estadual de Feira de Santana, Brazil
  • Alexandre Arnhold Universidade Federal do Sul da Bahia, Brazil
  • Jacques Hubert Charles Delabie Universidade Estadual de Santa Cruz (UESC), Brazil

DOI:

https://doi.org/10.13102/sociobiology.v69i4.7775

Keywords:

Correlative modeling, mechanistic modeling, conservation, invasive species, MaxEnt

Abstract

The state of the art of Formicidae biogeographic studies using distribution modeling tools was reviewed. We aimed to evaluate how and for what purpose such tools were used in ant studies, as well as detecting modeling methods, algorithms, and variables selected for these studies. We analyzed papers published from 2001 to 2021 and focused on predicting invasion risks, conservation, and potential distribution of species. We also considered the mechanistic and correlative approaches, types of algorithms, and environmental variables. We observed that modeling is first used to predict invasion risks before conservation. The correlative approach was the most used, although it does not consider biotic or physiological aspects as the mechanistic approach does. The most used algorithm was Maxent, combining data set of occurrences with climatic variables. Nine studies used combinations of algorithms with consensual models. Research using modeling has been conducted more and more. However, it remains still incipient, mainly regarding conservation, as the current distribution of most of the Formicidae species is not well known. Although not frequently used in ant studies, distribution modeling represents an important approach for research in biogeography, ecology, and related areas. Certain perspectives could be useful, for example, for studying climatic changes, since possible variations in ant distributions, if anticipated, could suggest or guide further investigations or decision-making in public policies.

Downloads

Download data is not yet available.

References

Accorti, M., Luti, F. & Tarducci, F. (1991). Methods for collecting data on natural mortality in bees. Ethology Ecology and Evolution, 3: 123-126. doi: 10.1080/03949370. 1991.10721924

Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z.Y. (2012). Effects of long distance transportation on honey bee physiology. Psyche: A Journal of Entomology. Special Issue. 1-10. doi: 10.1155/2012/193029

Alger, S.A., Burnham, P.A., Lamas, Z.S., Brody, A.K. & Richardson, L.L. (2018). Homesick: impacts of migratory beekeeping on honey bee (Apis mellifera) pests, pathogens, and colony size. PeerJ, 6: e5812. doi: 10.7717/peerj.5812

Al-Tikrity W.S., Hillmann R.C., Benton A.W. & Clarke W.W. (1971). A new instrument for brood measurement in a honeybee colony. American Bee Journal, 111: 20-26.

Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P. & Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11: 2284-2290. doi: 10.1111/j.1462-2920.2009.01953.x

Aronstein, K. & Saldivar, E. (2005). Characterization of a honey bee Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense. Apidologie, 36:3-14. doi: 10.1051/apido:2004062

Bordier, C., Klein, S., Le Conte, Y., Barron, A.B. & Alaux, C. (2018). Stress decreases pollen foraging performance in honeybees. Journal of Experimental Biology, 221: 1-5. doi: 10.1242/jeb.171470

Bordier, C., Suchail, S., Pioz, M., Devaud, J.M., Collet, C., Charreton, M., Conte, Y.L. & Alaux, C. (2017). Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism. Journal of Insect Physiology, 98: 47-54. doi: 10.1016/j.jinsphys.2016.11.013

Casteels, P., Ampe, C., Rivière, L., Van Damme, J., Elicone, C., Fleming, M., Jacobs, F. & Tempst, P. (1990). Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). European Journal of Biochemistry, 187: 381-386. doi: 10.1111/j.1432-1033.1990.tb15315.x

Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J.D. & Pettis, J.S. (2012). Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 58: 1090-1095. doi: 10.1016/j.jinsphys.2012.04.016

Crane, E. (1999). The world history of beekeeping and honey hunting. Routledge. 682p.

Cunha, A.R. & Martins, D. (2009). Classificação climática para os municípios de Botucatu e São Manuel, SP. Irriga, 14: 1-11. doi: 10.15809/irriga.2009v14n1p1-11

Elsik, C.G., Worley, K.C., Bennett, A.K., Beye, M., Camara, F., Childers, C.P. & Elhaik, E. (2014). Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 15: 86. doi: 10.1186/1471-2164-15-86

Even, N., Devaud, J.M., & Barron, A.B. (2012). General stress responses in the honey bee. Insects, 3: 1271-1298. doi: 10.3390/insects3041271

Evans, J.D. (2004). Transcriptional immune responses by honey bee larvae during the invasion by the bacterial pathogen, Paenibacillus larvae. Journal of Invertebrate Pathology, 85: 105-111. doi: 10.1016/j.jip.2004.02.004

Glenny, W., Cavigli, I., Daughenbaugh, K.F., Radford, R., Kegley, S.E. & Flenniken, M.L. (2017). Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PloS one, 12: e0182814. doi: 10.1371/journal.pone.0182814

Goulson, D., Nicholls, E., Botías, C. & Rotheray, E.L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347: 1255957. doi: 10.1126/science.1255957

Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443: 931-949. doi: 10.1038/nature05260

Iwasaki, A. & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature Immunology, 16: 343-353. doi: 10.1038/ni.3123

Lourenço, A.P., Florecki, M.M., Simões, Z.L.P. & Evans, J.D. (2018). Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensin-1. Insect Molecular Biology, 27: 577-589. doi: 10.1111/imb.12498

Maderson, S. & Wynne-Jones, S. (2016). Beekeepers’ knowledges and participation in pollinator conservation policy. Journal of Rural Studies, 45: 88-98. doi: 10.1016/j.jrurstud.2016.02.015

Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P.U. (2013). Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. Journal of Environmental Immunology and Toxicology, 1: 3-12. doi: 10.7178/jeit.1

Nation, J.L. (2015). Insect Physiology and Biochemistry. Boca Raton: CRC Press. 690p.

Navajas, M., Migeon, A., Alaux, C., Martin-Magniette, M.L., Robinson, G.E., Evans, J.D. & Le Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 9: 1-11. doi: 10.1186/1471-2164-9-301

Nazzi, F. & Pennacchio, F. (2014). Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 30: 556-561. doi: 10.1016/j.pt.2014.09.006

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29: e45. doi: 10.1093/nar/29.9.e45

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25: 345-353. doi: 10.1016/j.tree.2010.01.007

Randolt, K., Gimple, O., Geissendörfer, J., Reinders, J., Prusko, C., Mueller, M.J. & Beier, H. (2008). Immune-related proteins induced in the haemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Archives of Insect Biochemistry and Physiology, 69: 155-167. doi: 10.1002/arch.20269

Richard, F.J., Holt, H.L. & Grozinger, C.M. (2012). Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics, 13: 1-18. doi: 10.1186/1471-2164- 13-558

Sahebzadeh, N. & Lau, W.H. (2017). Expression of heat-shock protein genes in Apis mellifera meda (Hymenoptera: Apidae) after exposure to monoterpenoids and infestation by Varroa destructor mites (Acari: Varroidae). European Journal of Entomology, 114: 195-202. doi: 10.14411/eje.2017.024

Scharlaken, B., de Graaf, D.C., Goossens, K., Peelman, L.J., & Jacobs, F.J. (2008). Differential gene expression in the honeybee head after a bacterial challenge. Developmental and Comparative Immunology, 32: 883-889. doi: 10.1016/j.dci.2008.01.010

Schlüns, H. & Crozier, R.H. (2007). Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Molecular Biology, 16: 753-759. doi: 10.1111/j.1365-2583.2007.00768.x

Siede, R., Meixner, M.D. & Büchler, R. (2012). Comparison of transcriptional changes of immune genes to experimental challenge in the honey bee (Apis mellifera). Journal of Apicultural Research, 51: 320-328. doi: 10.3896/IBRA.1.51.4.05

Simone-Finstrom, M., Li-Byarlay, H., Huang, M.H., Strand, M.K., Rueppell, O. & Tarpy, D.R. (2016). Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6: 1-10. doi: 10.1038/srep32023

Whynott, D. (1991). Following the bloom: across America with the migratory beekeepers. Stackpole Books. 214p.

Yang, X. & Cox-Foster, D.L. (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences, 102: 7470-7475. doi: 10.1073/pnas.0501860102

Zar, J.H. (1996). Bioestatistical Analysis. New Jersey: Pretince Hall.

Zhu, X., Zhou, S. & Huang, Z.Y. (2014). Transportation and pollination service increase abundance and prevalence of Nosema ceranae in honey bees (Apis mellifera). Journal of Apicultural Research, 53: 469-471. doi: 10.3896/IBRA. 1.53.4.06

Downloads

Published

2022-12-28

How to Cite

Silva, P. S., Koch, E. B. de A., Arnhold, A., & Delabie, J. H. C. (2022). A Review of Distribution Modeling in Ant (Hymenoptera: Formicidae) Biogeographic Studies. Sociobiology, 69(4), e7775. https://doi.org/10.13102/sociobiology.v69i4.7775

Issue

Section

Review

Most read articles by the same author(s)

1 2 3 > >>