Flower Visitation by Bees, Wasps and Ants: Revealing How a Community of Flower-Visitors Establish Interaction Networks in a Botanical Garden
DOI:
https://doi.org/10.13102/sociobiology.v69i4.7894Keywords:
Pollination, Niche overlap, Hymenoptera, abiotic factorsAbstract
The Hymnoptera order includes several flower-visiting insects (e.g. ants, bees, and wasps) and the coexistence of many different species in the same community can generate interspecific competition. Notwithstanding shared communities, research which evaluates how these taxonomic groups influence a whole community of flower-visiting Hymenoptera is lacking. Moreover, abiotic factors can also impact these floral visits, because each organism responds differently to climatic variations. The goal of this study is to evaluate abiotic factors, specifically relative air humidity and air temperature, which may be able to impact the number and the frequency of interactions between hymenopterans and flowers and to assess the composition and niche organization, by making use of interaction networks, of the entire community of flower-visiting Hymenoptera at the botanical garden of the Universidade Federal Rural do Rio de Janeiro. For the duration of a year, we took samples in that botanical garden, compartmentalizing the collections temporally in accordance with the time of the insects’ shift (morning or afternoon). We observed a positive influence of air temperature on the number of ant interactions and visits. It is also possible to observe that most of these interaction networks exhibited a nested and non-modular pattern and an average level of network specialization. In addition, bees stood out as the species with the highest frequency of visits and with the most generalist behavior. This study demonstrates how a botanical garden can sustain a diverse community of floral visiting Hymenoptera in an urban environment and why it consists in an important tool for biodiversity conservation.
Downloads
References
Adedoja, O.A., Kehinde, T., & Samways, M.J. (2018). Insect-flower interaction networks vary among endemic pollinator taxa over an elevation gradient. PLoS One, 13. doi: 10.1371/journal.pone.0207453
Agostini, K. & Sazima, M. (2003). Plantas ornamentais e seus recursos para abelhas no campus da Universidade Estadual de Campinas, Estado de São Paulo, Brasil. Bragantia, 62. doi: 10.1590/S0006-87052003000300001
Anjos, D., Dáttilo, W., & Del-Claro, K. (2018). Unmasking the architecture of ant – diaspore networks in the Brazilian Savanna. PLoS One, 13: 1-17. doi: 10.1371/journal.pone.0201117
Azevedo, F., Gomes, V.S.R., Coutinho, R.L.M., & Philippsen, A.S. (2022). Formigas (Hymenoptera: Formicidae) em uma paisagem suburbana no noroeste do estado do Paraná, Brasil. Arquivos do Mudi, 26. doi: 10.4025/arqmudi.v26i1.61114
Banaszak-Cibicka, W., Ratyńska, H., & Dylewski, Ł. (2016). Features of urban green space favorable for large and diverse bee populations (Hymenoptera: Apoidea: Apiformes). Urban For Urban Green, 20: 448-452. doi: 10.1016/j.ufug.2016.10.015
Barbosa, B.C., Paschoalini, M., Maciel, T.T., & Prezoto, F. (2016). Visitantes florais e seus padrões temporais de atividade em flores de Dombeya wallichii (Lindl.) K. Schum (Malvaceae). Entomotropica, 31: 131-136.
Bascompte, J., Jordano, P., Melián, C.J., & Olesen, J.M. (2003). The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100: 9383-9387. doi: 10.1073/ pnas.1633576100
Beekman, M. & Ratnieks, F.L.W. (2001). Long-range foraging by the honey-bee, Apis mellifera L. Functional Ecology, 14: 490-496. doi: 10.1046/j.1365-2435.2000.00443.x
Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6. doi: 10.1186/1472-6785-6-9
Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, Constraints, and Conflicting Interests in Mutualistic Networks. Current Biology, 17: 341-346. doi: 10.1016/j.cub.2006.12.039
Blüthgen, N. & Klein, A.M. (2011). Functional complementarity and specialization: The role of biodiversity in plant-pollinator interactions. Basic and Applied Ecology, 12: 282-291. doi: 10.1016/j.baae.2010.11.001
Blüthgen, N. (2012). Interações plantas-animais e importância funcional da biodiversidade. In K. Del-Claro & H.M. Torezan-Silingardi (Eds.), Ecologia das Interações Plantas-Animais (pp 259-272). Rio de Janeiro: Technical Books Editora.
Brito, E.L.S., Sá, C.A., & Santos, G.M.M. (2020). Body Size and Its Relation to the Foraging Schedules of Social Wasps. Neotropical Entomology, 49: 668-676. doi: 10.1007/s13744-020-00789-4
Brock, R.E., Cini, A., & Sumner, S. (2021). Ecosystem services provided by aculeate wasps. Biological Reviews, 96: 1645-1675. doi: 10.1111/brv.12719
Brodmann, J., Twele, R., Francke, W., Hösler, G., Zhang, Q.-H., & Ayasse, M. (2008). Orchids Mimic Green-Leaf Volatiles to Attract Prey-Hunting Wasps for Pollination. Current Biology, 18: 740-744. doi: 10.1016/j.cub.2008.04.040
Campos-Navarrete, M.J., Parra-Tabla, V., Ramos-Zapata, J., Díaz-Castelazo, C., & Reyes-Novelo, E. (2013). Structure of plant-Hymenoptera networks in two coastal shrub sites in Mexico. Arthropod-Plant Interactions, 7: 607-617. doi: 10.1007/s11829-013-9280-1
Carvalho, D.M., Presley, S.J., & Santos, G.M.M. (2014). Niche overlap and network specialization of flower-visiting bees in an agricultural system. Neotropical Entomology, 43: 489-499. doi: 10.1007/s13744-014-0239-4
Carver, M., Blüthgen, N., & Grimshaw, J.F. (2003). Aphis clerodendri Matsumura (Hemiptera: Aphididae), attendant ants (Hymenoptera: Formicidae) and associates on Clerodendrum (Verbenaceae) in Australia. Australian Journal of Entomology, 42: 109-113. doi: 10.1046/j.1440-6055.2003.00339.x
Chalegre, S.L., Domingos-Melo, A., de Lima, C.T., Giulietti, A. M., & Machado, I.C. (2020). Nymphaea pulchella (Nymphaeaceae) and Trigona spinipes (Apidae) interaction: From florivory to effective pollination in ponds surrounded by pasture. Aquatic Botany, 166: 103267. doi: 10.1016/j.aquabot.2020.103267
Chamberlain, S.A., Kilpatrick, J.R., & Holland, J.N. (2010). Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant-plant mutualistic networks? Oecologia, 164: 741-750. doi: 10.1007/s00442-010-1673-6
Chen, G. & Sun, W. (2018). The role of botanical gardens in scientific research, conservation, and citizen science. Plant Diversity, 40: 181-188. doi: 10.1016/j.pld.2018.07.006
Classen, A., Petter, M.K., Kindeketa, J. et al. (2015). Temperature versus resource constraints: which factors determine bee diversity on Mount Kilimanjaro, Tanzania? Global Ecology and Biogeography, 24: 642-652. doi: 10.1111/geb.12286
Classen, A., Eardley, C.D., Hemp, A., et al. (2020). Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecology and Evolution, 10: 2182-2195. doi: 10.1002/ece3.6056
Clemente, M.A., Lange, D., Del-claro, K., et al. (2012). Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity. Psyche, 2012: 10. doi: 10.1155/2012/478431
Costa, S.N., Alves, R.M.O., Carvalho, C.A.L., & Conceição, P.J. (2015). Fontes de pólen utilizadas por Apis mellifera Latreille na região semiárida. Ciência Animal Brasileira, 16. doi: 10.1590/1089-6891v16i425538
Cysneiros, V.C., Pereira-Moura, M.V.L., Paula, E. de P., & Braz, D.M. (2011). Arboreal Eudicotyledons, Universidade Federal Rural do Rio de Janeiro Botanical Garden, state of Rio de Janeiro, Brazil. Check List, 7: 001-006. doi: 10.15560/7.1.1
Dáttilo, W., Guimarães, P.R., & Izzo, T.J. (2013a). Spatial structure of ant-plant mutualistic networks. Oikos, 122: 1643-1648. doi: 10.1111/j.1600-0706.2013.00562.x
Dáttilo, W., Rico-Gray, V., Rodrigues D.J., et al. (2013b). Soil and vegetation features determine the nested pattern of ant-plant networks in a tropical rainforest. Ecological Entomology, 38: 374-380. doi: 10.1111/een.12029
Dáttilo, W., Fagundes, R., Gurka, C.A.Q., et al. (2014a). Individual-based ant-plant networks: Diurnal-nocturnal structure and species-area relationship. PLoS One, 9. doi: 10.1371/journal.pone.0099838
Dátillo, W., Díaz-Castelazo, C., & Rico-Gray, V. (2014b). Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biological Journal, 113: 405-414. doi: 10.1111/bij.12350
Dáttilo, W. & Rico-Gray, V. (2018). Ecological Networks in the Tropics. Springer International Publishing, 202 p
De Marco Jr., P. & Coelho, F.M. (2004). Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodiversity and Conservation, 13: 1245-1255. doi: 10.1023/B:BIOC.0000019402.51193.e8
De Vega, C., Herrera, C.M., & Dötterl, S. (2014). Perspectives in Plant Ecology, Evolution and Systematics Floral volatiles play a key role in specialized ant pollination. Perspectives in Plant Ecology, Evolution and Systematics, 16: 32-42. doi: 10.1016/j.ppees.2013.11.002
Dehling, D.M. (2018). The Structure of Ecological Networks. In W. Dáttilo & V. Rico-Gray (Eds.), Ecological Networks in the Tropics (pp. 29-42). Springer International Publishing.
Del-Claro, K., Lange, D., Torezan-Silingardi, H.M., et al. (2018). The Complex Ant-Plant Relationship Within Tropical Ecological Networks. In: W. Dáttilo & V. Rico-Gray (Eds.), Ecological Networks in the Tropics (pp. 59-71). Springer International Publishing.
Del-claro, K., Rodriguez-Morales, D., Calixto, E.S., Martins, A.S. & Torezan-Silingardi, H.M. (2019). Ant pollination of Paepalanthus lundii (Eriocaulaceae) in Brazilian savanna. Annals of Botany, 123: 1159-1165. doi: 10.1093/aob/mcz021
Díaz-Castelazo, C., Guimarães Jr., P.R., Jordano, P., Thompson, J.N., Marquis, R.J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91: 793-801. doi: 10.1890/08-1883.1
Díaz-Castelazo, C., Sánchez-Galvan, I., Guimarães Jr, P.R., Raimundo, R.L.G. & Rico-Gray, V. (2013). Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111: 1285-1293. doi: 10.1093/aob/mct071
Ebeling, A., Klein, A., & Tscharntke, T. (2011). Plant-flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic and Applied Ecology, 12: 300-309. doi: 10.10 16/j.baae.2011.04.005
Federman, R., Carmel, Y., & Kent, R. (2013). Irrigation as an important factor in species distribution models. Basic and Applied Ecology, 14: 651-658. doi: 10.1016/j.baae.2013.09.005
Fellers, J.H. (1989). Daily and seasonal activity in woodland ants. Oecologia, 78: 69-76. doi: 10.1007/BF00377199
Fortuna, M.A., Stouffer, D.B., Olesen, J.M., Jordano, P., Mouillot, D., Krasnov, B.R., Poulin, R., & Bascompte, J. (2010). Nestedness versus modularity in ecological networks: Two sides of the same coin? Journal of Animal Ecology, 79: 811-817. doi: 10.1111/j.1365-2656.2010.01688.x
Garbuzov, M. & Ratnieks, F.L.W. (2014). Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Functional Ecology, 28: 364-374. doi: 10.1111/1365-2435.12178
Geslin, B., Le Féon, V., Folschweiller, M., Flacher, F., Carmignac, D., Motard, E., Perret, S., & Dajoz, I. (2016). The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecology and Evolution, 6: 6599-6615. doi: 10.1002/ece3.2374
Giannini, T.C., Garibaldi, L.A., Acosta, A.L., Silva, J.S., Maia, K.P., Saraiva, A.M., Guimarães Jr., P.R., & Kleinert, A.M.P. (2015). Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. PLoS One, 10. doi: 10.1371/journal.pone.0137198
Gobatto, A.A., Chagas, L.S., & Pereira, R. de S. (2021). É o arboreto do Jardim Botânico do Rio de Janeiro hotspot urbano para os polinizadores? Biodiversidade, 20: 2-31.
Gonzálvez, F.G., Santamaría, L., Corlett, R.T., Rodríguez-& Gironés, M.A. (2013). Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology, 101: 78-85. doi: 10.1111/1365-2745.12006
Grass, I., Albrecht, J., Jauker, F., Diekötter, T., Warzetcha, D., Wolters, V., Farwig, N. (2016). Agriculture, Ecosystems and Environment Much more than bees – Wildflower plantings support highly diverse flower-visitor communities from complex to structurally simple agricultural landscapes. Agriculture, Ecosystems and Environment, 225: 45-53. doi: 10.1016/j.agee.2016.04.001
Groutsch, J.K., Miller, N.C., Tuiwawa, M., Hayes, S., Stevens, M.I., & Schwarz, M.P. (2018). Not all exotic pollinator introductions are bad: an introduced buzz-pollinating bee Amegilla pulchra (Hymenoptera: Apidae) in Fiji indicates little potential for enhancing the spread of weeds. Austral Entomology, 58: 533-539. doi: 10.1111/aen.12346
Gruber, M.A.M., Santoro, D., Cooling, M., Lester, P.J., Hoffmann, B.D., Boser, C., & Lach, L. (2022). A global review of socioeconomic and environmental impacts of ants reveals new insights for risk assessment. Ecological Applications, 32. doi: 10.1002/eap.2577
Guallpa-Calva, M.A, Guilcapi-Pacheco, E.D., & Espinoza-Espinoza, A.E. (2019). Flora apícola de la zona estepa espinosa Montano Bajo, en la Estación Experimental Tunshi, Riobamba, Ecuador. Dominio de las Ciencias, 5: 71-93.
Guimarães, P.R., Rico-Gray, V., Reis, S.F., & Thompson, J.N. (2006). Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society B, 273: 2041-2047. doi: 10.1098/rspb.2006.3548
Guimarães, P.R. & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software, 21: 1512-1513. doi: 10.1016/j.envsoft. 2006.04.002
Guimerà, R. & Amaral, L.A.N. (2005). Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 02001: 1-13. doi: 10.10 88/1742-5468/2005/02/P02001
Hall, D.M., Camilo, G.R., Tonietto, R.K., Ahrné, K., Arduser, M., Ascher, J.S., Baldock, K.C.R., Fowler, R., Frankie, G., Goulson, D., Gunnarsson, B., Hanley, M.E., Jackson, J.I., Langellotto, G., Lowenstein, D., Minor, E.S., Philpott, S.M., Potts, S.G., Sirohi, M.H., Spevak, E.M., Stone, G.N. & Threlfall, C.G. (2017). The city as a refuge for insect pollinators. Conservation Biology, 31: 24-29. doi: 10.1111/cobi.12840
Heinrich, B. (1993). The Hot-Blooded Insects. Heidelberg: Springer Berlin, 601 p.
Hirota, M.M. (2003). Monitoring the brazilian Atlantic forest cover.. In: C. Galindo-Leal and I.G. Câmara (Eds.), The Atlantic Forest of South América: biodiversity status, threats, and outlook (pp. 60-65). Washington: Island Press.
Hölldobler, B. & Wilson, E.O. (1990). The Ants. Cambridge: Harvard University Press, 732 p.
Hofmann, M.M., Fleischmann, A., & Renner, S.S. (2018). Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters. Oecologia, 187: 701-706. doi: 10.1007/s00442-018-4110-x
Imperatriz-Fonseca, V.L., Canhos, D.A.L., Alves, D. de A., & Saraiva, A.M. (2012). Polinizadores no Brasil: Contribuição e perspectivas para a biodiversidade, uso sustentável, conservação e serviços ambientais. São Paulo: Edusp, 489 p.
Ito, F., Ymane, S., Eguchi, K., Noerdijito, W.A., Kahono, S., Tsuji, K., Ohkawara, K., Yamauchi, K., Nishida, T., & Nakamura, K. (2001). Ant Species Diversity in the Bogor Botanic Garden, West Java, Indonesia, with Descriptions of Two New Species of the Genus Leptanilla (Hymenoptera, Formicidae). J-STAGE, 10: 379-404. doi: 10.3759/tropics.10.379
Junker, R.R., Blüthgen, N., Brehm, T., Binkenstein, J., Paulus, J., Martin Schaefer, H. & Stang, M. (2013). Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Functional Ecology, 27: 329-341. doi: 10.1111/1365-2435.12005
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, 274: 303-313. doi: 10.1098/rspb.2006.3721
Köppen, W. (1948). Climatología: Con un estudio de los climas de la tierra. (Es) Traducido del alemán. México, D.F: Fondo de Cultura Económica, 474 p.
Kovac, H., Stabentheiner, A., & Brodschneider, R. (2015). What do foraging wasps optimize in a variable environment, energy investment or body temperature? Journal of Comparative Physiology A, 201: 1043-1052. doi: 10.1007/s00359-015-1033-4
Lange, D., Dáttilo, W., & Del-claro, K. (2013). Influence of extrafloral nectary phenology on ant-plant mutualistic networks in a neotropical savanna. Ecological Entomology, 38: 463-469. doi: 10.1111/een.12036
Lange, D. & Del-claro, K. (2014). Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations? PLoS One: 9. doi: 10.1371/journal.pone.0105574
Lange, D., Calixto, E.S., Rosa, B.B., Sales, T.A., & Del-Claro, K. (2019). Natural history and ecology of foraging of the Camponotus crassus Mayr, 1862 (Hymenoptera: Formicidae). Journal of Natural History, 53: 1737-1749. doi: 10.1080/00222933.2019.1660430
Larson, J.L., Kesheimer, A.J., & Potter, D.A. (2014). Pollinator assemblages on dandelions and white clover in urban and suburban lawns. Journal of Insect Conservation, 18: 863–873. doi: 10.1007/s10841-014-9694-9
Latif, A., Iqbal, N., Ejaz, M., Malik, S.A., Saeed, S., Gulshan, A.B., Alvi, A.M., & Dad, K. (2016). Pollination biology of Callistemon viminalis (Sol. Ex Gaertn.) G. Don (Myrtaceae), Punjab, Pakistan. Journal of Asia-Pacific Entomology, 19: 467-471. doi: 10.1016/j.aspen.2016.04.010
Laviski, B.F.S., Mayhé-Nunes, A.J., & Nunes-Freitas, A.F. (2021). Structure of ant-diaspore networks and their functional outcomes in a Brazilian Atlantic Forest. Sociobiology, 68: e-7104. doi: 10.13102/sociobiology.v68i3.7104
Lima, A.C.O.L., Castilho-Noll, M.S.M., Gomes, B., & Noll, F.B. (2010). Social Wasp Diversity (Vespidae, Polistinae) in a Forest Fragment in the Northeast of São Paulo State Sampled with Different Methodologies. Sociobiology, 55: 613-625.
Lima, Y.F., Melquiades, C.C.V., & Silva, E.M.S. (2021). Diversidade e Comportamento de Abelhas na Florada de Antigonon leptopus HOOK. & ARN. (Polygonaceae) em Região Semiárida. HOLOS, 8: 1-13. doi: 10.15628/holos.2021.10760
Lopes, T.N., Verçoza, F.C., & Missagia, C.C.C. (2015). Fenologia reprodutiva e visitantes florais de Cordia superba Cham. (Boraginaceae) na vegetação da restinga de Grumari, Rio de Janeiro. Revista de Biologia Neotropical, 12: 39-43.
Lorenzi, H. (2015). Plantas para jardim no Brasil: herbáceas, arbustivas e trepadeiras. Nova Odessa: Instituto Plantarum, 1120 p.
Lorenzi, H. (2018). Árvores e arvoretas exóticas no Brasil: madeireiras, ornamentais e aromáticas. Nova Odessa: Instituto Plantarum de estudos de flora, 600 p.
Lorenzi, H. (2020). Árvores brasileiras: manual de iden-tificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Jardim Botânico Plantarum, 352 p.
Loyola, R.D. & Martins, R.P. (2006). Trap-nest occupation by solitary wasps and bees (Hymenoptera: Aculeata) in a forest urban remanent. Neotropical Entomology, 35. doi: 10.1590/S1519-566X2006000100006
Luna, P., Villalobos, R., Escobar, R., Neves, F.S., & Dátillo, W. (2021). Global trends in the trophic specialisation of flower-visitor networks are explained by current and historical climate. Ecology Letters, 25: 113-124. doi: 10.1111/ele.13910
Marín, L., Martínez-Sánchez, M.E., Sagot, P., Navarrete, D., & Morales, H. (2020). Floral visitors in urban gardens and natural areas: Diversity and interaction networks in a neotropical landscape. Basic and Applied Ecology, 43: 3-15. doi: 10.1016/j.baae.2019.10.003
Marinho, D. & Vivallo, F. (2020). Unveiling the trap-nesting bees and wasps’ fauna (Hymenoptera: Apocrita) and associated organisms of the Jardim Botânico do Rio de Janeiro, Brazil. Papéis Avulsos de Zoologia, 60. doi: 0.11606/1807-0205/ 2020.60.49
Maruyama, P.K., Bonizário, C., Marcon, A.P., D'Angelo, G., Silva, M.M., Silva Neto, E.m., Oliveira, P.E., Sazima, I., Sazima, M., Vizentin-Bugoni, J., dos Anjos, L., Rui, A.M., & Marçal Jr., O. (2019). Plant-hummingbird interaction networks in urban areas: Generalization and the importance of trees with specialized flowers as a nectar resource for pollinator conservation. Biological Conservation, 230: 187-194. doi: 10.1016/j.biocon.2018.12.012
Mazzeo, N.M. & Torretta, J.P. (2014). Wild bees (Hymenoptera: Apoidea) in an urban botanical garden in Buenos Aires, Argentina. Studies on Neotropical Fauna and Environment, 50: 182-193. doi: 10.1080/01650521.2015.1093764
Mello, M.A.R., Santos, G.M. de M., Mechi, M.R., & Hermes, M.G. (2011). High generalization in flower-visiting networks of social wasps. Acta Oecologica, 37: 37-42. doi: 10.1016/j.actao.2010.11.004
Mello, M.A.R, Muylaert, R.L., Pinheiro, R.B.P., & Ferreira, G.M.F (2016). Guia para análise de redes ecológicas. Especialização (pp 74-46). Belo Horizonte.
Mukhopadhyay, A. & Quader, S. (2018). Ants on Clerodendrum infortunatum: Disentangling Effects of Larceny and Herbivory. Environmental Entomology, 47: 1143-1151. doi: 10.1093/ee/nvy090
Nagasaki, O. (2021). Functional specialization for pollination by scoliid wasps and solitary bees of Ampelopsis glandulosa (Vitaceae). Flora, 284: 151921. doi: 10.1016/J.FLORA.2021. 151921
Nishida, S. M., Naide, S.S., & Pagnin, D. (2014). Plantas que atraem aves e outros bichos. São Paulo: Cultura Acadêmica, 99p.
Nogueira, R.R., Santos, D.F.B., Calixto, E.S., Torezan-Silingardi, H. M., & Del-Claro, K. (2021). Negative Effects of Ant-Plant Interaction on Pollination: Costs of a Mutualism. Sociobiology, 68: e7259. doi: 10.13102/sociobiology.v68i4.7259
Olesen, J.M., Bascompte, J., Dupont, Y.L., & Jordano, P. (2007). The modularity of pollination networks. PNAS, 104: 19891-19896. doi: 10.1073/pnas.0706375104
Oliveira, F.L., Dias, V.H.P., & Costa, E.M. (2012). Influência das variações climáticas na atividade de vôo das abelhas jandairas Melipona subnitida Ducke (Meliponinae). Revista Ciência Agronômica, 43. doi: 10.1590/S1806-66902012000300024
Oliveira Jr., J.F., Delgado, R.C., Gois, G., Lannes, A., Dias, F.O., Souza, J.C., & Souza, M.. (2014). Análise da Precipitação e sua Relação com Sistemas Meteorológicos em Seropédica, Rio de Janeiro. FLORAM, 21:140-149. doi: 10.4322/floram.2014.030
Paaijmans, K.P., Heinig, R.L., Seliga, R.A., Blanford, J.I., Blanford, S., Murdock, C.C. & Thomas, M.B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19: 2373-2380. doi: 10.1111/gcb.12240
Paini, D.R. (2004). Impact of the introduced honey bee (Apis mellifera) (Hymenoptera : Apidae) on native bees: A review. Austral Ecology, 29: 399-407. doi: 10.1111/j.1442-9993.2004.01376.x
Petanidou, T., Kallimanis, A.S., Lazarina, M., Tscheulin, T., Devalez, J., Stefanaki, A., Hanlidou, E., Vujić, A., Kaloveloni, A. & Sgardelis, S.P. (2017). Climate drives plant-pollinator interactions even along small-scale climate gradients: the case of the Aegean. Plant Biology, 20: 176-183. doi: 10.1111/plb.12593
Pick, R.A. & Blochtein, B. (2002). Atividades de vôo de Plebeia saiqui (Holmberg) (Hymenoptera, Apidae, Meliponini) durante o período de postura da rainha e em diapausa. Revista Brasileira de Zoologia, 19: 827-839. doi: 10.1590/S0101-81 752002000300021
Pimentel, R.G. & Rangel, G.C. (2017). Biologia Floralde duas espécies de Dombeya (Malvaceae) no Jardim Botânico da UFRRJ. Revista Trópica – Ciências Agrárias e Biológicas, 09: 77-85.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Raju, A.J.S., Raju, V.K., Victor, P., & Naidu, S.A. (2001). Floral ecology, breeding system and pollination in Antigonon leptopus L. (Polygonaceae). Plant Species Biology, 16: 159-164. doi: 10.1046/j.1442-1984.2001.00060.x
Rico-Gray, V. & Oliveira, P.S. (2008). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press, 320 p
Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A. Guimarães Jr., P.R. & Holland, J.N. (2012). Abiotic factors shape temporal variation in the structure of an ant-plant network. Arthropod-Plant Interactions, 6: 289-295. doi: 10.1007/s11829-011-9170-3
Rohitash & Jain, R.K. (2010). Reproductive biology of Clerodendrum splendens (Verbenaceae). Advances in Bioresearch, 1: 84-86.
Russo, L., Keyzer, C.W., Harmon-Threatt, A.N., LeCroy, K.A., & Maclvor, J.S. (2021). The managed-to-invasive species continuum in social and solitary bees and impacts on native bee conservation. Current Opinion in Insect Science, 46: 43-49. doi: 10.1016/j.cois. 2021.01.001
Sakagami, S.F., Laroca, S., & Moure, J.S. (1967). Wild Bee Biocoenotics in Sao Jose dos Pinhais (PR). Journal of the Faculty of Science, Hokkaido University, 16: 235-291.
Santos, G.M.M., Dáttilo, W., & Presley, S.J. (2014). The seasonal dynamic of ant-flower networks in a semi-arid tropical environment. Ecological Entomology, 39: 674-683. doi: 10.1111/een.12138
Santos, M.N., Delabie, J.H.C., & Queiroz, J.M. (2017). Parques Urbanos na Conservação da Diversidade de Formigas: Estudo de Caso no Rio de Janeiro. In: O.C. Bueno, A.E.C. M.S.C. Campos, Morini (Eds.), Formigas em ambientes urbanos no Brasil (pp. 337-361). Bauru: Canal 6 editora.
Schlindwein, C. (2004). Are oligolectic bees always the most effective pollinators? In: B. M. Freitas & J. O. P. Pereira (Eds.), Solitary bees: Conservation, rearing and management for pollination (pp. 231-240). Fortaleza: Imprensa Universitária – Universidade Federal do Ceará.
Silveira, F.A., Melo, G.A., & Almeida, E.A. (2002). Abelhas brasileiras: Sistemática e Identificação. Belo Horizonte: Fundação Araucária, 254 p.
Silva, F.R. & Rossa-Feres, D.C. (2016). Fragmentation gradients differentially affect the species range distributions of four taxonomic groups in semi-deciduous Atlantic forest. Biotropica, 49: 283-292. doi: 10.1111/btp.12362
Silva, A.F., Carvalho, Y.C., & Costa, S.J.M. (2018). Fauna de Formigas (Hymenoptera, Formicidae) em um fragmento de Floresta Atlântica no Estado de Minas Gerais. Revista Brasileira de Zoociências, 19: 44-55.
Simões, D., Gobbi, N. & Batarce, B.R. (1985). Mudanças sazonais na estrutura populacional em colônias de 3 espécies do gênero Mischocyttarus. Naturalia, 10: 89-105.
Smith, R.M., Thompson, K., Hodgson, J.G., Warren, P.H., & Gaston, K.J. (2006). Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biological Conservation, 129: 312-322. doi: 10.1016/j.biocon. 2005.10.045
Spiesman, B.J. & Inouye, B.D. (2013). Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology, 94: 2688-2696. doi: 10.1890/13-0977.1
Togni, O.C., Locher, G.D.A., Giannotti, E., & Tobias, O. (2014). The Social Wasp Community (Hymenoptera, Vespidae) in an Area of Atlantic Forest, Ubatuba, Brazil. Check List, 10: 10-17. doi: 10.15560/10.1.10
Torezan-Silingardi, H.M. (2012). Flores e animais: uma introdução à história natural da polinização. In K. Del-Claro & H.M. Torezan-Silingardi (Eds.), Ecologia das Interações Plantas-Animais (pp 111-139). Rio de Janeiro: Technical Books Editora.
Tschoeke, P.H., Oliveira, E.E., Dalcin, M.S., Silveira-Tschoeke, M.C.A.C., & Santos, G.R. (2015). Diversity and flower-visiting rates of bee species as potential pollinators of melon (Cucumis melo L.) in the Brazilian Cerrado. Scientia Horticulturae, 186: 207-216. doi: 10.1016/j.scienta.2015.02.027
Twerd, L. & Banaszak-Cibicka, W. (2019). Wastelands: their attractiveness and importance for preserving the diversity of wild bees in urban areas. Journal of Insect Conservation, 23: 573-588. doi: 10.1007/s10841-019-00148-8
Twerd, L., Banaszak-Cibicka, W., Sobieraj-Betlińska, A., Waldon-Rudzioneka, B., & Hoffmann, R. (2021). Contributions of phenological groups of wild bees as an indicator of food availability in urban wastelands. Ecological Indicators, 126: 107616. doi: 10.1016/j.ecolind.2021.107616
Vale, V.S., Schiavini, I., Lopes, S.F., Oliveira, A.P., Dias Neto, O.C., & Gusson, A.E. (2013). Functional groups in a semideciduous seasonal forest in Southeastern Brazil. Biotemas, 26: 45-58.
Villamil, N., Boege, K., & Stone, G.N. (2018). Ant-Pollinator Conflict Results in Pollinator Deterrence but no Nectar.Frontiers in Plant Science, 9: 1-14. doi: 10.3389/fpls.2018.01093
Vizentin-Bugoni, J., Maruyama, P. K, Souza, C. S., et al. (2018). Plant-Pollinator Networks in the Tropics: A Review. In W. Dáttilo & V. Rico-Gray (Eds.), Ecological Networks in the Tropics (pp. 29-42). Springer International Publishing.
Wang, Y., DeAngelis, D.L., & Nathaniel Holland, J. (2015). Dynamics of an ant-plant-pollinator model. Communications in Nonlinear Science and Numerical Simulation, 20: 950-964. doi: 10.1016/j.cnsns.2014.06.024
Watts, S., Dormann, C.F., Martín González, A.M., & Ollerton J. (2016). The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Annals of Botany, 118: 415-429. doi: 10.1093/aob/mcw114
Winkler, K., Wäckers, F.L., Kaufman, L.V., Larraz, V., & van Lenteren, J.C.(2009). Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biological Control, 50: 299-306. doi: 10.1016/j.biocontrol.2009.04.009
Wittmann, D. (2008). Nest Architecture, Nest Site Preferences and Distribution of Plebeia wittmanni (Moure & Camargo, 1989) in Rio Grande do Sul, Brazil (Apidae: Meliponinae). Studies on Neotropical Fauna and Environment, 24: 17-23. doi: 10.1080/01650528909360771
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Mariana R. Menezes, Bianca F. S. Laviski, Adriano P. L. dos Santos, Eder C. B. de França, Mariane S. Moreira, Ricardino Conceição-Neto, Jarbas M. Queiroz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).