A Novel Integrative Methodology for Research on Pot-honey Variations During Post-harvest

Authors

  • Patricia Vit Universidad de Los Andes
  • Bajaree Chuttong Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
  • Norhasnida Zawawi Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, 43400, Malaysia
  • Maria Diaz Quality Services International GmbH, 28199 Bremen, Germany.
  • Jane van der Meulen Quality Services International GmbH, 28199 Bremen, Germany
  • Hajar F. Ahmad Universiti Malaysia Pahang
  • Francisco A. Tomas-Barberan Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, Edf 25, 30100 Murcia, Spain
  • Gina Meccia University of the Andes
  • Khanchai Danmek School of Agriculture and Natural Resources, University of Phayao, Phayao 56000 Thailand
  • Jorge Enrique Moreno Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
  • David W. Roubik Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
  • Ortrud Monika Barth Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
  • Dirk W. Lachenmeier Chemical and Veterinary Investigation Agency CVUA, Karlsruhe, Germany
  • Michael S. Engel 11Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive-Suite 140, University of Kansas, Lawrence, Kansas 66045, USA. 12Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA.

DOI:

https://doi.org/10.13102/sociobiology.v69i4.8251

Keywords:

antioxidant activity, biosurfactant activity, 1H-NMR, flavonoids, Meliponini, melyssopalinology, sensory analysis

Abstract

This novel review of analytical methods for pot-honey research was intended to provide concise references to a 35-day post-harvest experiments at 30 °C, in an integrated study. Diverse methods were selected from specialized literature, from the AOAC (Association of Official Analytical Chemists), and the International Honey Commission. Besides the geographical and seasonal origin, the pot-honey I.D. consists of entomological and botanical identifications, the latter performed by acetolyzed or natural melissopalynology. The methods of this integrative study included: 1. Physicochemical analysis (Aw, color, moisture, pH, free acidity, lactone acidity, total acidity, hydroxymethylfurfural (HMF), and sugars by highperformance liquid chromatography HPLC), 2. Targeted proton nuclear magnetic resonance 1H-NMR metabolomics (sugars, ethanol, HMF, aliphatic organic acids, amino acids, and botanical markers), 3. Biochemical composition (flavonoids, polyphenols), 4. Antioxidant activity (ABTS 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid-free radical scavenging assay, DPPH 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, ferric reduction assay FRAP), 5. Microbial counts (aerobic plate, yeast and mold, Bacillus, and lactic acid bacteria count), 6. Honey microbiome profiling via independent-culture method: high-throughput bacteria and fungi based on amplicon sequencing approaches, 7. Sensory evaluation (odor, aroma, taste, persistence), and 8. Honey authenticity and biosurfactant tests by an interphase emulsion. A further section was included to provide basic information on the results obtained using each method. This was needed to explain the interacting components derived from pot-honey processing within the stingless bee nest and post-harvest transformations.

Downloads

Download data is not yet available.

References

Abarenkov, K., Henrik Nilsson, R., Larsson, K.-H., Alexander, I.J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A.F.S., Tedersoo, L., Ursing, B.M., Vrålstad, T., Liimatainen, K., Peintner, U. & Kõljalg, U. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 186: 281-285. doi: 10.1111/j.1469-8137.2009.03160.x

Abellan-Schneyder, I., Matchado, M.S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhus, K. (2021). Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. mSphere, 6: e01202-20. doi: 10.1128/mSphere.01202-20

AOAC International. (2012). Official Methods of Analysis of Association of Analytical Chemists, 19th ed. AOAC International. Chapter 44. Sugar and sugar products. Subchapter 4. Honey, pp. 25-37. Ed. AOAC International, Gaithersburg, MD, United States of America.

Arbefeville, S., Harris, A. & Ferrieri, P. (2017). Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species. Journal of Microbiological Methods, 140: 40-46. doi:10.1016/j.mimet.2017.06.015

Aween, M.M., Hassan, Z., Muhialdin, B.J., Eljamel, Y.A., AlMabrok, A.S.W. & Lani, M.N. (2012). Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram Positive Bacteria. Journal of Food Science, 77: M364M37.

Ayala, R., Gonzalez, V.H. & Engel, M.S. (2013). Mexican stingless bees (Hymenoptera: Apidae): Diversity, distribution, and indigenous knowledge. In P.Vit, S.R.M. Pedro & D. W. Roubik (Eds.), Pot-honey: A legacy of stingless bees. (pp. 135-152). New York: Springer.

Barth, O.M. (1970a). Análise microscópica de algunas amostras de miel; 1.Pólen dominante. Anais da Academia Brasileira de Ciencias, 42: 351-366.

Barth, O.M. (1970b). Análise microscópica de algunas amostras de miel; 2. Pólen acessório. Anais da Academia Brasileira de Ciencias, 42: 571-590.

Barth, O.M. (1989). O Pólen no mel brasileiro. Rio de Janeiro: Editora Luxor, 151 pp.

Barth, O.M. (2004). Melissopalynology in Brazil: a review of pollen analysis of honeys, propolis and pollen loads of bees. Scientia Agricola, 61: 342-350. doi: 10.1590/S0103-90162004 000300018

Barth, O.M., Freitas, A.S. & Luz, C.F.P. (2021). Usual laboratorial techniques in tropical melissopalynology. In J.R. Lemos (Ed.), Ensino, Pesquisa e Inovação em Botânica. (pp. 85-98). Ponta Grossa, Paraná, Brazil: Atena Editora. doi: 10.22533/at.ed. 6602109048

Barth, O.M., Freitas, A.S. & Vit, P. (2015). Avaliação palinológica de algumas amostras de mel do Equador Espécies nectaríferas subrepresentadas de Bombacaceae. Memorias de Resúmenes I Congreso de Apicultura y Meliponicultura en Ecuador, 21-22 febrero, Machala, provincia de El Oro, Ecuador. p. 15

Bhatta, C., Gonzalez, V.H. & Smith, D.R. (2020) Traditional uses and relative cultural importance of Tetragonula iridipennis (Smith) (Hymenoptera: Apidae: Meliponini) in Nepal. Journal of Melittology, 97: 1-13.

Bogdanov, S., Ruoff, K. & Oddo, L. P. (2004). Physico-chemical methods for the characterization of unifloral honeys: a review. Apidologie, 35: S4-S17.

Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A. & Caporaso, J.G.(2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6: 1-17. doi: 10.1186/s40168-018-0470-z

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y-X, Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., Lauren, J., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight, R., & Caporaso, J.G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37: 852-857. doi: 10.1038/s41587-019-0209-9

Brown, C.A. (1960). Palynological techniques. Baton Rouge: USA, 188 pp.

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., & Holmes, S.P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13: 581-583. doi: 10.14806/ej.17.1.200

Camargo, J.M.F. & Pedro, S.R.M. (2013). Meliponini Lepeletier, 1836. In J.S., Moure, D., Urban & G.A.R., Melo (Eds.), Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region (pp. 272-578). Curitiba, Brasil: Sociedade Brasilera de Entomologia, 1958 pp. online version http://moure. cria.org.br/catalogue?id=34135 (accessed date: 13 April, 2022).

Castro-Mejía, J.L., Khakimov, B., Krych, Ł., Bülow, J., Bechshøft, R.L., Højfeldt, G., Mertz, K.H., Garne, E.S., Schacht, S.R., Ahmad, H.F., Kot, W., Hansen, L.H., Perez-Cueto, F.J.A., Lind, M.V., Lassen, A.J., Tetens, I., Jensen, T., Reitelseder, S., Jespersen, A.P., Holm, L., Engelsen, S.B., & Nielsen, D.S. (2020). Physical fitness in community-dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures. AgingCell, 19: e13105. doi: 10.11 11/acel.13105

Cavia, M.M., Fernáez-Muiño, M.A., Huidobro, J.F. & Sancho, M.T. (2004). Correlation between moisture and water activity of honeys harvested in different years. Journal of Food Science, 69: C368-C370.

Chemical book. https://www.chemicalbook.com/SpectrumEN (accessed date: 25 April, 2022).

Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34: i884-i890. doi: 10.1093/bioinformatics/bty560

Chong, J., Liu, P., Zhou, G. & Xia, J. (2020). Using Microbiome Analyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 15: 799-821. doi: 10.1038/s41596-019-0264-1

Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. (2015). Effects of long term storage on stingless bee (Hymenoptera: Apidae: Meliponini) honey. Journal of Apicultural Research, 54: 441-451.

Cokcetin, N.N., Pappalardo, M., Campbell, L.T., Brooks, P., Carter, D.A., Blair, S. & Harry, E.J. (2016). The antibacterial activity of Australian Leptospermum honey correlates with methylglyoxal levels. PLoS ONE, 11: e0167780. doi: 10.1371/journal.pone.0167780

Dhariwal, A., Chong, J., Habib, S., King, I.L., Agellon, L.B. & Xia, J. (2017). MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45: W180–W188. doi: 10.1093/nar/gkx295

D’Arcy, B.R., Rintoul, G.B., Rowland, C.Y. & Blackman, A.J. (1997). Composition of Australian honey extractives. 1. Norisoprenoids, monoterpenes, and other natural volatiles from blue gum (Eucalyptus leucoxylon) and yellow box (Eucalyptus melliodora) honeys. Journal of Agricultural and Food Chemistry, 45: 1834-1843. doi: 10.1021/jf960625

Domon, B. & Costello, C. (1988). A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal, 5: 397-409. doi 10.10 07/BF01049915

Dziezak, J.D. (2016). Acids: Natural acids and acidulants. In B. Caballero, P.M., Finglas,& F. Toldrá (Eds.), Encyclopedia of Food and Health(pp. 15-18). Amsterdam: Elsevier.

Echeverrigaray, S., Scariot, F.J., Foresti, L., Schwarz, L.V., Rocha, R.K.M., da Silva, G.P., Moreira, J.P. & Delamare, A.P.L. (2021). Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. International Journal of Food Microbiolology, 347: 109200. doi: 10.1016/j.ijfoodmicro.2021.109200

Engel, M.S. (2000). A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates, 3296: 1-11.

Engel, M.S. & Rasmussen, C. (2021). Corbiculate bees. In C.K. Starr (Ed.), Encyclopedia of Social Insects (pp. 302-310). Cham: Springer. 1049 pp.

Engel, M.S., Herhold, H.W., Davis, S.R., Wang, B. & Thomas, J.C. (2021a). Stingless bees in Miocene amber of southeastern China (Hymenoptera: Apidae). Journal of Melittology, 105: 1-83.

Engel, M.S., Ceríaco, L.M.P., Daniel, G.M., Dellapé, P.M., Löbl, I., Marinov, M., Reis, R.E., Young, M.T., Dubois, A., Agarwal, I., Albornoz, P.L., Alvarado, M., Alvarez, N., Andreone, F., Araujo-Vieira, K., Ascher, J.S., Baêta, D., Baldo, D., Bandeira, S.A., Barden, P., Barrasso, D.A., Bendifallah, L., Bockmann, F.A., Böhme, W., Borkent, A., Brandão, C.R.F., Busack, S.D., Bybee, S.M., Channing, A., Chatzimanolis, S., Christenhusz, M.J.M., Crisci, J.V., D’Elía, G., da Costa, L.M., Davis, S.R., de Lucena, C.A.S., Deuve, T., Elizalde, S.F., Faivovich, J., Farooq, H., Ferguson, A.W., Gippoliti, S., Gonçalves, F.M.P., Gonzalez, V.H., Greenbaum, E., Hinojosa-Díaz, I.A., Ineich, I., Jiang, J.-P., Kahono, S., Kury, A.B., Lucinda, P.H.F., Lynch, J.D., Malécot, V., Marques, M.P., Marris, J.W.M., McKellar, R.C., Mendes, L.F., Nihei, S.S., Nishikawa, K., Ohler, A., Orrico, V.G.D., Ota, H., Paiva, J., Parrinha, D., Pauwels, O.S.G., Pereyra, M.O., Pestana, L.B., Pinheiro, P.D.P., Prendini, L., Prokop, J., Rasmussen, C., Rödel, M.-O., Rodrigues, M.T., Rodríguez, S.M., Salatnaya, H., Sampaio, Í., Sánchez-García, A., Shebl, M.A., Santos, B.S., Solórzano-Kraemer, M.M., Sousa, A.C.A., Stoev, P., Teta, P., Trape, J.-F., Van-Dúnem dos Santos, C., Vasudevan, K., Vink, C.J., Vogel, G., Wagner, P., Wappler, T., Ware, J.L., Wedmann, S., Zacharie, C.K. & Ziegler, T. (2021b). The taxonomic impediment: A shortage of taxonomists, not the lack of technical approaches. Zoological Journal of the Linnean Society, 193: 381-387. doi: 10.1093/zoolinnean/zlab072

Engel, M.S. (2022). Notes on South American stingless bees of the genus Scaptotrigona (Hymenoptera: Apidae), Part IV: Four new species of group B from the Andean region. Journal of Melittology, 112: 1-13. doi: 10.17161/jom.i112.18128

Erdtman, G. (1952). Pollen Morphology and Plant Taxonomy - Angiosperms. Almqvist and Wicksell, Stockholm, 539 pp.

Faegri, K. & Iversen, J. (1950). Textbook of Modern Pollen Analysis. Copenhagen, Denmark Munksgaard. 168 pp.

Faegri, K. & Iversen, J. (1996). Textbook of Modern Pollen Analysis. Copenhagen, Denmark Munksgaard. 237 pp.

Fletcher, M.T., Hungerford, N.L., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I.S.J., Blanchfield, J.T. & Zawawi, N. (2020). Stingless bee honey, a novel source of trehalulose: A biologically active disaccharide with health benefits. Scientific Reports, 10: 12128. doi: 10.1038/s41598-020-68940-0

Gonnet, M., Lavie, P. & Nogueira-Neto. P. (1964). Étude de quelques characteristiques des miels récoltés para certains Méliponines brésiliens. Comptes Rendus de l’Académie des Sciences, 258: 3107-3109.

Guerrini, A., Bruni, R., Maietti, S., Poli, F., Rossi, D., Paganetto, G., Muzzoli, M., Scalvenzi, L. & Sacchetti, G. (2009). Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of ancient health product. Food Chemistry, 114: 1413-1420.

Hagr, T.E., Mirghani, M.E.S., Elnour, A.A.H.M. & Bkharsa, B.E. (2017). Antioxidant capacity and sugar content of honey from Blue NileState, Sudan. International Food Research Journal, 24: 452-456.

Haidamus, S.L., Lorenzon, M.C.A. & Barth, O.M. (2019). Biological elements and residues in Brazilian honeys. Greener Journal of Biological Sciences, 9: 8-14. doi 10.15580/GJBS 2019.1.022119038

IBM Corp. (2019). IBM SPSS Statistics for Windows, Version 26.0. IBM Corp. Armonk, NY.

INEN (2015). Instituto Ecuatoriano de Normalización. Miel de Pote. Requisitos. Pot-honey standards. Project B (pp. 1-16). Quito, Ecuador: INEN. Available from: http://www.saber.ula.ve/stinglessbeehoney/norms.php (accessed date: 17 November, 2022).

International Honey Commision (2009). World Network of Honey Science. Harmonised Methods of the International Honey Commission http://ihc-platform.net/ihcmethods2009.pdf (accessed date: 10 March, 2022).

Iwama, S. & Melhem, T.S. (1979).The pollen spectrum of the honey of Tetragonisca angustula angustula Latreille (Apidae, Meliponinae). Apidologie, 10: 275-295.

Katoh, K. & Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772-780.

Kearns, C.A. & Inouye, D.W. (1993). Techiques for pollination biologist. Niwot, USA: University of Colorado Press. 583 pp.

Kerkvliet, J.D. & Meijer, H.A.J. (2000). Adulteration of honey: relation between microscopic analysis and d13 measurements. Apidologie, 31: 717-726. doi: 10.1051/apido:2000156

Kešnerová, L., Emery, O., Troilo, M., Liberti, J., Erkosar, B. & Engel, P. (2020). Gut microbiota structure differs between honey bees in winter and summer. ISME Journal, 14: 801-814. doi: 10.1038/s41396-019-0568-8

Lani, M.N., Zainudin, A.H., Razak, S.B.A., Razak, A., Mansor, A.B. & Hassan, Z. (2017). Microbiological quality and pH changes of honey produced by stingless bees, Heterotrigona itama and Geniotrigona thoracica stored at ambient temperature. Malaysian Applied Biology, 46: 89-96.

Leonhardt, S.D., Heard, T.A. & Wallace, H.M. (2014). Differences in the resource intake of two sympatric Australian stingless bee species. Apidologie, 45: 514-527. doi: 10.1007/s13592-013-0266-x

Leonhardt, S.D. & Kaltenpoth, M. (2014). Microbial communities of three sympatric Australian stingless bee species. PLoS One, 9: e105718. doi: 10.1371/journal.pone.0105718

Linus Pauling Institute. Corvalis, USA: Oregon State University. https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids (accessed date: 23 April 2022).

Liu, H., Hall, M.A., Brettell, L.E., Halcroft, M., Wang, J., Nacko, S., Spooner-Hart, R., Cook, J. M., Riegler, M. & Singh, B. (2021). Gut microbial diversity in stingless bees is linked to host wing size and is influenced by geography. bioRxiv. doi: 10.1101/2021.07.04.451070

Louveaux, J. (1968). L’analyse pollinque des miels. pp. 325-362. In R. Chauvin (Ed.), Traité de biologie de l’abeille, vol. 3. Paris, France: Masson. 152 pp

Louveaux, J., Maurizio, A. & Vorwohl, G. (1978). Methods of melissopalynology. Bee World, 59: 139-157. doi: 10.1080/ 0005772X.1978.11097714

Machado, A.M., Miguel, M.G., Vilas-Boas, M. & Figueiredo, A.C. (2020). Honey volatiles as a fingerprint for botanical origin – A review on their occurrence on monofloral honeys. Molecules, 25: 374. doi: 10.3390/molecules25020374

Mander, L. & Punyasena S.W. (2014). On the taxonomic resolution on pollen and spore records of Earth’s vegetation. International Journal of Plant Science, 175: 931-945. https://www.journals.uchicago.edu/doi/10.1086/677680 (accessed date: 8 August 2022).

Mardis, E.R. (2008). Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics, 9: 387-402.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17: 10. doi: 10.14806/ej.17.1.200

Massaro, C.F., Villa, F.T. & Hauxwell, C. (2018). Metabolomic analysis of pot-pollen from three species of Australian stingless bees (Meliponini). In P., Vit, S.R.M., Pedro & D.W., Roubik (Eds.), Pot-Pollen in stingless bee melittology. (pp. 401-417). Springer: Cham, Switzerland. 481 pp.

Marconi, M., Modesti, A., Alvarez, L.P., Ogoña, P.V., Mendoza, A.C., Vecco-Giove, C.D., Luna, J.O., Di Giulio, A., & Mancini, E. (2022). DNA Barcoding of stingless bees (Hymenoptera: Meliponini) in Northern Peruvian forests: A plea for integrative taxonomy. Diversity, 14: 632. doi: 10.3390/d14080632

Maurizio, A. (1975). Microscopy of honey. pp. 240-257. In Crane E. (Ed.), Honey: A comprehensive survey. Heinemann; London, UK. 608 pp.

Mbareche, H., Veillette, M. & Bilodeau, G.J. (2021). In Silico Study Suggesting the Bias of Primers Choice in the Molecular Identification of Fungal Aerosols. Journal of Fungi (Basel, Switzerland),7: 99. doi: 10.3390/jof7020099

Melo, G.A.R. (2021). Stingless bees (Meliponini). In C.K. Starr (Ed.), Encyclopedia of Social Insects (pp. 883-900). Cham: Springer. 1049 p.

Merker, R.I. (1998). FDA's Bacteriological Analytical Manual (BAM). United States Food and drug Administration, 8th Edition, Revision A, Maryland 946 p.

Michener, C.D. (2007). The Bees of the World. 2nd Edition. Baltimore: Johns Hopkins University Press.

Michener, C.D. (2013). The Meliponini. In P. Vit, S.R.M. Pedro & D. W. Roubik (Eds.), Pot-honey. A legacy of stingless bees (pp. 3-17). New York: Springer.

Moreno, J.E., Vergara, D. & Jaramillo, C. (2014). Las colecciones palinológicas del Instituto Smithsonian de Investigaciones Tropicales (STRI), Panamá. Boletín de la Asociación Latinoamericana de Paleobotánica y Palinología (ALPP), 14: 207-222.

Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F. O., Tedersoo, L., Saar, I., Kõljalg, U. & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47: D259- D264. doi: 10.1093/nar/gky1022

Ohmenhaeuser, M., Monakhova, Y.B., Kuballa, T. & Lachenmeier, D.W. (2013). Qualitative and quantitative control of honeys using NMR spectroscopy and chemometrics. International Scholarly Research Notices, 2013: 825318. doi: 10.11 55/2013/825318

Olofsson, T.C. & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honey bee Apis mellifera. Current Microbiology, 57: 356-363. doi: 10.1007/s00284-008-9202-0

Parks, D.H., Chuvochina, M., Chaumeil, P.-A., Rinke, C., Mussig, A.J. & Hugenholtz, P. (2020). A complete domain-to-species taxonomy for Bacteria and Archaea. Nature Biotechnology, 38: 1079-1086. doi: 10.1038/s41587-020-0501-8

Prado, A., Barret, M., Vaissière, B.E. & Torres-Cortes, G. (2022). Honey bees change the microbiota of pollen. bioRxiv, 1-15.doi: 10.1101/2022.02.21.481367

Price, M.N., Dehal,P.S. & Arkin, A.P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26: 1641-1650.

Pubchem. https://pubchem.ncbi.nlm.nih.gov/ (accessed date: 1 April 2022).

Punt, W., Hoen, P.P., Blackmore, S., Nilsson, S. & Le Thomas, A. (2007). Glossary of pollen and spore terminology. 2nd Edition. Review of Palaeobotany and Palynology, 143: 1-81.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. & Glöckner, F.O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41: 590-596. doi: 10.1093/nar/gks1219

Ramlan, N.A.F.M., Zin, A.S.M., Safari, N.F., Chan, K.W. & Zawawi, N. (2021). Application of heating on the antioxidant and antibacterial properties of Malaysian and Australian stingless bee honey. Antibiotics, 10: 1365.doi: 10.3390/antibiotics10111365

Rasmussen, C. & Cameron, S.A. (2007). A molecular phylogeny of the Old World stingless bees (Hymenoptera: Apidae: Meliponini) and the non-monophyly of the large genus Trigona. Systematic Entomology, 32: 26-39.

Rodríguez-Pérez, H., Ciuffreda, L. & Flores, C. (2020). NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data. Bioinformatics, 37: 1600-1601. doi: 10.1093/ bioinformatics/btaa900

Roubik, D.W. (1989). Ecology and natural history of tropical bees. New York: Cambridge University Press. 514 pp.

Roubik, D.W. (2013). Why they keep changing the names of our stingless bees (Hymenoptera: Apidae; Meliponini): a little history and guide to taxonomy. In P., Vit & D.W., Roubik (Eds.), Stingless bees process honey and pollen in cerumen pots. Facultad de Farmacia y Bioanálisis, Universidad de Los Andes; Mérida, Venezuela.

Roubik, D.W. & Moreno, J.E. (1991). Pollen and spores of Barro Colorado Island. Monograph in Systematic Botany, n. 36. St. Louis, Montana: Missouri Botanical Garden. 269 pp.

Roubik, D.W. & Moreno, J.E. (2009). Trigona corvina: an ecological study based on unusual nest structure and pollen analysis. Psyche, 2009: 268756. doi:1 0.1155/2009/268756.

Roubik, D.W. & Moreno, J.E. (2013). How to be a bee-botanist using pollen spectra. In P. Vit, S.R.M., Pedro, D. Roubik (Eds.), Pot-Honey: A legacy of stingless bees (pp. 295-314). New York: Springer. 654 pp.

Roubik, D.W. & Moreno, J.E. (2018). Pot-Pollen as a Discipline. What does it Include? Part I, Pollen and the Evolution and Mutualism. In P. Vit, S.R.M. Pedro, D. Roubik Eeds.), Pot-Pollen in Stingless Bee Melittology (pp. 3-15). Cham: Springer Nature.

Roubik D.W. & Vergara, C. (2021). Geographical distribution of bees: a history and an update. In FAO, IZSLT, Apimondia and CAAS (Eds.), Good beekeeping practices for sustainable apiculture. (pp. 11-13). Rome: FAO Animal Production and Health Guidelines No. 25 https://www.fao.org/3/cb5353en/cb 5353en.pdf (accessed date: 27 February, 2022).

Santos-Sánchez, N.F., Salas-Coronado, R., Hernández-Carlos, B. & Villanueva-Cañongo, C. (2019). Shikimic acid pathway in biosynthesis of phenolic compounds. In: Plant physiological aspects of phenolic compounds, Soto-Hernández, M., García-Mateos, R., Palma-Tenango, M. (Eds.) IntechOpen. doi: 10.5772/ intechopen.83815

Schwarz, H.F. (1948). Stingless bees (Meliponidae) of the Western Hemisphere. Bulletin of the American Museum of Natural History, 90: 1-546. http://hdl.handle.net/2246/123 (accessed date: 27 June, 2022).

Siew, S.W., Choo, M.Y., Marshall, I.P.G., Abd Hamid, H., Kamal, S.S., Nielsen, D.S. & Ahmad, H.F. (2022). Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring the marine sediment pollution in Pahang, Malaysia. Marine Pollution Bulletin, 182: 114022. doi: 10.1016/j.marpolbul.2022.114022

Smallfield, B.M., Joyce, N.I. & van Klink, J.W. (2018). Developmental and compositional changes in Leptospermum scoparium nectar and their relevance to mānuka honey bioactives and markers. New Zealand Journal of Botany, 56: 183-197. doi: 10.1080/0028825X.2018.1446450

de Sousa, L.P. (2021). Bacterial communities of indoor surface of stingless bee nests. PLoS ONE, 16: e0252933. doi: 10.1371/journal.pone.0252933

Spraul, M., Schütz, B., Rinke, P., Koswig, S., Humpfer, E., Schäfer, H., Mortter, M., Fang, F., Marx, U.C. & Minoja, A. (2009). NMR-based multi parametric quality control of fruit juices: SGF profiling. Nutrients, 1: 148-155. doi: 10.3390/nu1020148

Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13: 615-621.

Tang, J., Diao, P., Shu, X., Li, L. & Xiong, L. (2019). Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells: In vitro assessment and a theoretical model. BioMed Research International. doi: 10.1155/2019/7039802

Tay, D.D., Siew, S.W., Razali, M.N.B. & Ahmad, H.F.B. (2021). Metadata Analysis For Gut Microbiota between Indoor and Street Cats of Malaysia. Current Science and Technology, 1: 56-65. doi: 10.15282/cst.v1i1.6443

Tay, D.D., Siew, S.W., Shamzir Kamal, S., Razali, M.N. & Ahmad, H.F.B. (2022). ITS1 amplicon sequencing of feline gut mycobiome of Malaysian local breeds using Nanopore Flongle. Archives of Microbiology, 204: 314. doi: 10.1007/s00203-022-02929-3.

Tedersoo, L., Anslan, S., Bahram, M., Põlme, S., Riit, T., Liiv, I., Kõljalg, U., Kisand, V., Nilsson, R. H., Hildebrand, F., Bork, P. & Abarenkov, K. (2015). Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 10: 1-43. doi: 10.3897/mycokeys.10.4852

Thomas, S.C. & Kharnaior, S. (2021). Biochemical composition and bioactivity analysis of sour honey samples from Nagaland, Northeast India. Journal of Apicultural Research. doi: 10.1080/00218839.2021.1918438

Tola Y.H, Waweru, J.W., Ndungu, N.N., Kiatoko Nkoba, K., Bernard Slippers, B.J.C. & Paredes, J.C. (2021). Loss and gain of gut bacterial phylotype symbionts in Afrotropical stingless bee species (Apidae: Meliponinae). Microorganisms, 9: 2420. doi: 10.3390/microorganisms9122420

Truchado, P., Vit, P., Ferreres, F. & Tomás-Barberán F. (2011). Liquid chromatography-tandem mass spectrometry analysis allows the simultaneous characterization of C-glycosyl and O-glycosyl flavonoids in stingless bee honeys. Journal of Chromatography A, 1218: 7601-7607.

Truchado, P., Vit, P., Heard, T., Tomás-Barberán, F.A. & Ferreres. F. (2015). Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass. Its application to Tetragonula carbonaria honey from Australia. Rapid Communications in Mass Spectrometry, 29: 948-954. doi: 10.1002/rcm.7184

Tysset, C., & De Rantline de la Roy Durand, C. (1991). Contribution to the study of intestinal microbial infection of healthy honey bees: Inventory of bacterial population by negative organisms. Philadelphia: Department of Agriculture, SEA-AR, Eastern region research centres; pp. 21-55.

Tuksitha, L., Chen, Y.-L.S., Chen, Y.-L., Wong, K.-Y. & Peng, C.-C. (2018). Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology, 21: 563-557. doi: 10.1016/j.aspen. 2018.03.007

Vásquez, A., Forsgren, E., Fries, I., Paxton, R.J., Flaberg, E., Szekely, L. & Olofsson, T.C. (2012). Symbionts as major modulators of insect health: Lactic acid bacteria and honey bees. PLoS ONE, 7: e 0033188. doi: 10.1371/journal.pone. 0033188

Vásquez, A. & Olofsson, T.C. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 48: 189-195. doi: 10.3896/IBRA.1.48.3.07

Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data, GigaScience, 2:16.

Vit, P. (1998). A test to detect cane sugar honey. Archivos Latinoamericanos de Nutrición, 48: 62-64. https://www.alanrevista.org/ediciones/1998/1/art-12/ (accessed date: 8 February, 2022).

Vit, P. (2005). Melissopalynology, Venezuela. Mérida, Venezuela: APIBA-CDCHT, Universidad de Los Andes. 205 pp.

Vit, P. (2008). Una guía para la evaluación sensorial de miel de abejas. In P. Vit (Ed.), Abejas sin Aguijón y Valorización Sensorial de su Miel (pp. 118-131). Mérida, Venezuela: APIBA, FFB, DGCE, Universidad de Los Andes. 146 pp.

Vit, P. (2022). A honey authenticity test by interphase emulsion reveals biosurfactant activity and biotechnology in the stingless bee nest of Scaptotrigona sp. ‘Catiana’ from Ecuador. Interciencia, 47: 416-425. doi: 10.1101/2022.05.11.491040

Vit, P., Pedro, S.R.M. & Roubik, D.W. (2013). Introduction. In P. Vit., S.R.M. Pedro & D.W. Roubik (Eds.), Pot-honey. A legacy of stingless bees (pp. xi-xv). New York, USA: Springer. 654 pp.

Zander, E. (1935). Beiträge zur Herkunftsbestimmung bei Honig, Band I: Pollengestaltung und Herkunftsbestimmung bei Blütenhonig mit besonderer Berücksichtigung des deutschen Trachtgebietes, Berlin: Verlag der Reichsfachgruppe Imker E.V.

Downloads

Additional Files

Published

2022-11-28

How to Cite

Vit, P., Chuttong, B., Zawawi, N., Diaz, M., van der Meulen, J., Ahmad, H. F., Tomas-Barberan, F. A., Meccia, G., Danmek, K., Moreno, J. E., Roubik, D. W., Barth, O. M., Lachenmeier, D. W., & Engel, M. S. (2022). A Novel Integrative Methodology for Research on Pot-honey Variations During Post-harvest. Sociobiology, 69(4), e8251. https://doi.org/10.13102/sociobiology.v69i4.8251

Issue

Section

Review

Most read articles by the same author(s)