Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae)
DOI:
https://doi.org/10.13102/sociobiology.v70i2.8262Keywords:
Argyreia cuneata, electroantennogram, foraging specificity, Tetralonia macroceps, volatile organic compoundsAbstract
Floral specificity is a behavior that evolved due to mutualistic interactions between the plant-pollinator community. Flowers advertise themselves using visual or chemical cues to attract pollinators and gain reproductive success through pollination. Pollinators forage for rewards such as nectar or pollen produced by the flowers. We found that an anthophorid bee, Tetralonia macroceps, foraged specifically on Argyreia cuneata flowers. No visitation was observed on the flowers of A. nervosa though both belong to Convolvulaceae. T. macroceps was the most abundant floral visitor (5.21 bees/flower/5 min) on A. cuneata and did not visit A. nervosa. Mass flowering and narrow tubular flower structure with easy access to pollen in A. cuneata were the traits that accounted for the foraging specificity of T. macroceps. The present study investigates the preference of T. macroceps for the flowers and floral extracts of A. cuneata and A. nervosa. The bee visited 10.16 flowers/5 min of A. cuneata. T. macroceps were highly attracted to the flowers of A. cuneata. No bees were attracted to A. nervosa. The floral abundance of A. cuneata was relatively higher compared to A. nervosa. Pollen analysis of foraging bees of T. macroceps revealed the selective preference towards the pollen of A. cuneata. The highest number of bees preferred the extract of A. cuneata (7.75) compared to A. nervosa (0.50) in the Y-olfactory maze. Floral extract of A. cuneata caused the highest neuronal electroantennogram (EAG) response (1.48 mV) than A. nervosa (0.36 mV). Our preliminary studies indicated the presence of specific volatile organic compounds (VOCs) nonacosane (13.26%), hexatriacontane (12.06%), and beta farnesene (6.19%) observed in A. cuneata were absent in congener A. nervosa.
Downloads
References
Abrol, D.P. (2009). Plant-pollinator interactions in the context of climate change - an endangered mutualism. Journal of Palynology, 45: 1-25.
Armbruster, S.A., Corbet, A.J., Vey, M., Shu-Juan, L. & Shuang-Quan, H. (2013). In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. Annals of Botany, 113: 97-103. DOI: https://doi.org/10.1093/aob/mct261
Blight, M.M., Metayer, M.L., Delegue, M.H.P., Pickett, J.A., Poll, F.P. & Wadhams, L.J. (1997). Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by Honeybees, Apis mellifera. Journal of Chemical Ecology, 23: 1715-1727. DOI: https://doi.org/10.1023/B:JOEC.0000006446.21160.c1
Bronstein, J.L., Alarcon, R. & Geber, M. (2006). The evolution of plant-insect mutualisms. New Phytologist, 172: 412-428. DOI: https://doi.org/10.1111/j.1469-8137.2006.01864.x
Chittka, L. & Raine, N.E. (2006). Recognition of flowers by pollinators. Current Opinions on Plant Biology, 9: 428-35. DOI: https://doi.org/10.1016/j.pbi.2006.05.002
Damon, A. & Roblero, P.S. (2007). A survey of pollination in remnant orchid populations in Soconusco, Chiapas. Tropical Ecology, 48: 1-14.
Dobson, H.E.M., Groth, I. & Bergstrom, G. (1996). Pollen advertisement: chemical contrasts between flower and pollen odors. American Journal of Botany, 83: 877-885. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb12779.x
Dötterl, S. & Vereecken, N.J. (2010). The chemical ecology and evolution of bee-flower interactions: A review and perspectives. Canadian Journal of Zoology, 88: 668-697. doi: 10.1139/Z10-031. DOI: https://doi.org/10.1139/Z10-031
Douglas, A.E. (2008). Conflict, cheats and the persistence of symbioses. New Phytologist, 177: 849-858. DOI: https://doi.org/10.1111/j.1469-8137.2007.02326.x
Dreisig, H. 1995. Ideal free distributions of nectar foraging bumblebees. Oikos, 72: 161-172. DOI: https://doi.org/10.2307/3546218
Ela, M.A., Ali, M., Fohouo, F.N.T. & Messi, J. (2012). The importance of a single floral visit of Eucara macrognatha and Tetralonia fraterna (Hymenoptera: Apidae) in the pollination and the yields of Abelmoschus esculentus in Maroua, Cameroon. African Journal of Agricultural Research, 7: 2853-2857. DOI: https://doi.org/10.5897/AJAR12.359
Engel, M.S. & Baker, D.B. (2006). A New Species of Tetralonia (Thygatina) from India, with Notes on the Oriental Fauna (Hymenoptera: Apidae). American Museum Novitates, 3527: 1-9. DOI: https://doi.org/10.1206/0003-0082(2006)3527[1:ANSOTT]2.0.CO;2
Erdtman, G. (1960). The Acetolysis method. A Revised Description. Svensk Botanisk Tidskrift, 54, 561-564.
Fenster, C.B., Armbruster W.S., Wilson, P., Dudash, M.R. & Thomson, J.D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35: 375-403. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132347
George, A.P., Nissen, R.J., Ironside, D.A. & Anderson, P. (1989). Effects of nitidulid beetles on pollination and fruit set of Annona sp. hybrids. Scientia Horticulturae, 39: 289-299. DOI: https://doi.org/10.1016/0304-4238(89)90122-2
Giurfa, M., Vorobyev, M., Kevan, P. & Menzel, R. (1996). Detection of coloured stimuli by honeybees: minimum visual angles and receptor-specific contrasts. Journal of Comparative Physiology A,178: 699-709. DOI: https://doi.org/10.1007/BF00227381
Grass, I., Bohle, V., Tscharntke, T. & Westphal, C. (2018). How plants’ reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere, 9: 2-15. DOI: https://doi.org/10.1002/ecs2.2106
Hori, M. & Namatame, M. (2013). Host plant volatiles responsible for the invasion of Stenotus rubrovittatus (Heteroptera: Miridae) into paddy fields. Journal of Applied Entomology, 137: 340-346. DOI: https://doi.org/10.1111/jen.12001
Karunaratne, W.A.I.P., Edirisinghe, J.P. & Gunatilleke, C.V.S. (2005). Floral relationships of bees in selected areas of Sri Lanka. Ceylon Journal of Science (Biological Science), 34: 27-45.
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of Royal Society B, Biological Sciences, 274: 303-313. DOI: https://doi.org/10.1098/rspb.2006.3721
Knudsen, J.T., Eriksson, R., Gershenzon, J. & Stihl, B. (2006). Diversity and distribution of floral scent. The Botanical Reviews, 72: 1-120. DOI: https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
Kunze, J. & Gumbert, A. (2001). The combined effect of color and odor on flower choice behavior of bumblebees in flower mimic systems. Behavioral Ecology, 12: 447-456. DOI: https://doi.org/10.1093/beheco/12.4.447
Kuriya, S., Hattori, M., Nagano, Y. & Itino, T. (2015). Altitudinal flower size variation correlates with local pollinator size in a bumblebee-pollinated herb, Prunella vulgaris L. (Lamiaceae). Journal of Evolutionary Biology, 28: 1761-1769. DOI: https://doi.org/10.1111/jeb.12693
Larue, A.A.C., Raguso, R.A. & Junker, R.R. (2016). Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. Journal of Animal Ecology, 85: 396-408. DOI: https://doi.org/10.1111/1365-2656.12441
Lawson, M.J., Craven, B.A., Paterson, E.G. & Settles, G.S. (2012). A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chemical Senses, 37: 553-566. DOI: https://doi.org/10.1093/chemse/bjs039
Leonard, A.S. & Masek, P. (2014). Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A, 200: 463-74. DOI: https://doi.org/10.1007/s00359-014-0904-4
Leonhardt, S.D., Zeilhofer, S., Bluthgen, N. & Schmitt, T. (2010). Stingless bees use terpenes as olfactory cues to find resin sources. Chemical Senses, 35: 603-611. DOI: https://doi.org/10.1093/chemse/bjq058
Mas, F., Horner, R., Brierley, S., Harper, A. & Suckling, D.M. (2020). The scent of individual foraging bees. Journal of Chemical Ecology, 46: 524-533. DOI: https://doi.org/10.1007/s10886-020-01181-7
Mayer, C., Adler, L., Armbruster, W. S., Dafni, A., Eardley, C., Huang, S.-Q., Kevan P.G., Ollerton, J., Packer, L., Ssymank, A., Stout, J.C. & Potts, S.G. (2011). Pollination ecology in the 21st century: key questions for future research. Journal of Pollination Ecology, 3: 8-23. DOI: https://doi.org/10.26786/1920-7603(2011)1
Michener, C.D., The bees of the world. Baltimore: Johns Hopkins University Press, 2000, xiv + [1] + 913 pp.
Milet-Pinheiro, P., Ayasse, M. & Dötterl, S. (2015). Visual and olfactory floral cues of Campanula (Campanulaceae) and their significance for host recognition by an oligolectic bee pollinator. PLoS One, 10: e0128577. DOI: https://doi.org/10.1371/journal.pone.0128577
Montero, L.S., Garcia, S.C., Rosas, D.A., Crisostomo, J.F.G., Polanco, M.V., Conesa, J.G. & Lopez, L.C. (2018). Pollinator preferences for floral volatiles emitted by dimorphic anthers of a buzz-pollinated herb. Journal of Chemical Ecology, 44: 1058-1067. DOI: https://doi.org/10.1007/s10886-018-1014-5
Muhlemann, J.K., Waelti, M.O., Widmer, A. & Schiestl, F.P. (2006). Post pollination changes in floral odor in Silene latifolia: adaptive mechanisms for seed-predator avoidance? Journal of Chemical Ecology, 32: 1855 1860. DOI: https://doi.org/10.1007/s10886-006-9113-0
Nathan, P.T., Karuppudurai, T., Raghuram, H. & Marimuthu, G. (2009). Bat foraging strategies and pollination of Madhuca latifolia (Sapotaceae) in Southern India. Acta Chiropterologica, 11: 435-441. DOI: https://doi.org/10.3161/150811009X485657
Neff, J.L. & Rozen, J.G. (1995). Foraging and nesting biology of the bee, Anthemurgus passiflorae (Hymenoptera: Apoidea), descriptions of its immature stages, and observations on its floral host (Passifloraceae). American Museum Novitates, 3138: 1-19.
Ollerton, J., Winfree, R. & Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos, 120: 321-326. DOI: https://doi.org/10.1111/j.1600-0706.2010.18644.x
Parachnowitsch, A.L., Raguso, R.A. & Kessler, A. (2012). Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytologist, 195: 667-675. DOI: https://doi.org/10.1111/j.1469-8137.2012.04188.x
Pauly, A. (1984). Contribution a I’etude desgenres afrotropicaux de Nomiinae. Revue de Zoologie Africaine, 98: 693-702.
Possingham, H. P. 1992. Habitat selection by 2 species of nectarivore/habitat quality isolines. Ecology, 73: 1903-1912. DOI: https://doi.org/10.2307/1940041
Raguso, R.A. & Willis, M.A. (2005). Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Animal Behavior, 69: 407-418. DOI: https://doi.org/10.1016/j.anbehav.2004.04.015
Reinecke, A., Ruther, J. & Hilker, M. (2005). Electrophysiological and behavioral responses of Melolantha melolantha to saturated and unsaturated aliphatic alcohols. Entomologia Experimentalis et Applicata, 115: 33-40. DOI: https://doi.org/10.1111/j.1570-7458.2005.00274.x
Renoult, J.P., Valido, A., Jordano, P. & Schaefer, H.M. (2014). Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytologist, 201: 678-686. DOI: https://doi.org/10.1111/nph.12539
Riffell, J.A., Alarcon, R., Abrell, J., Davidowitz, G., Bronstein, J.L., Hildebrand, J.G. (2008). Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proceedings of the National Academy of Sciences USA, 105: 3404-3409. DOI: https://doi.org/10.1073/pnas.0709811105
Sajad, A. & Saeed, S. (2010). Floral host plant range of Syrphid flies (Syrphidae: Diptera) under natural conditions in Southern Punjab, Pakistan. Pakistan Journal of Botany, 42: 1187-1200.
Salvagnin, U., Malnoy, M., Thöming, G., Tasin, M., Carlin, S., Martens, S., Vrhovsek, U., Angeli, S. & Anfora, G. (2018). Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behavior. Plant Biotechnology Journal, 16: 264-271. DOI: https://doi.org/10.1111/pbi.12767
Shaara, A.H.F. (2014). The foraging behavior of honey bees, Apis mellifera: a review. Veterinarni Medicina, 59: 1-10. DOI: https://doi.org/10.17221/7240-VETMED
Sheppard, C.A. & Oliver, R.A. (2004). Yucca moths and yucca plants: Discovery of the most wonderful case of fertilisation. American Entomologist, 50: 32-46. DOI: https://doi.org/10.1093/ae/50.1.32
Shivalingaswamy, T.M., Amala, U., Gupta, A. & Raghavendra, A. (2020). Non-Apis bee diversity in an experimental pollinator garden in Bengaluru – a Silicon Valley of India. Sociobiology, 67: 593-598. DOI: https://doi.org/10.13102/sociobiology.v67i4.5023
Spaethe, J., Moser, W.H. & Paulus, H.F. (2007). Increase of pollinator attraction by means of a visual signal in the sexually deceptive orchid, Ophrys heldreichii (Orchidaceae). Plant Systematics and Evolution, 264: 31-40. DOI: https://doi.org/10.1007/s00606-006-0503-0
Stang, M., Klinkhamer, P.G.L. & Meijden, E.V.D. (2006). Size constraints and flower abundance determine the number of interactions in a plant flower visitor web. Oikos, 112: 111-121. DOI: https://doi.org/10.1111/j.0030-1299.2006.14199.x
Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., Konaté, S. and Linsenmair, E.K. (2017). Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 7: 17691. DOI: https://doi.org/10.1038/s41598-017-17970-2
Stout, J. (2000). Does size matter? Bumblebee behavior and the pollination of Cytisus scoparius L. (Fabaceae). Apidologie, 31: 129-139. DOI: https://doi.org/10.1051/apido:2000111
Subramanya, S. & Radhamani, T.R. (1993) Pollination by birds and bats. Current Science, 65: 201-209.
Theis, N. & Raguso, R.A. (2005). The effect of pollination on floral fragrance in thistles. Journal of Chemical Ecology, 31: 2581-2600. DOI: https://doi.org/10.1007/s10886-005-7615-9
Vibina, V. & Subaharan, K. (2019). Electrophysiological and behavioral response of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) to fermented coconut sap neera. Journal of Plantation Crops, 47: 82-89.
Zander, E. (1935). Beitrage zur Herkunftsbestimmung bei Honig. I Reichsfachgruppe Imker, Berlin. II. Liedloff. Loth & Michaelis. Leipzig, p. 465.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Amala Udayakumar, Raghavendra Anjanappa, Kesavan Subaharan, Timalapur M. Shivalingaswamy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).