Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae)

Authors

  • Amala Udayakumar ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India
  • Raghavendra Anjanappa ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India
  • Kesavan Subaharan ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India
  • Timalapur M. Shivalingaswamy ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Hebbal Bengaluru, Karnataka, India

DOI:

https://doi.org/10.13102/sociobiology.v70i2.8262

Keywords:

Argyreia cuneata, electroantennogram, foraging specificity, Tetralonia macroceps, volatile organic compounds

Abstract

Floral specificity is a behavior that evolved due to mutualistic interactions between the plant-pollinator community. Flowers advertise themselves using visual or chemical cues to attract pollinators and gain reproductive success through pollination. Pollinators forage for rewards such as nectar or pollen produced by the flowers. We found that an anthophorid bee, Tetralonia macroceps, foraged specifically on Argyreia cuneata flowers. No visitation was observed on the flowers of A. nervosa though both belong to Convolvulaceae. T. macroceps was the most abundant floral visitor (5.21 bees/flower/5 min) on A. cuneata and did not visit A. nervosa. Mass flowering and narrow tubular flower structure with easy access to pollen in A. cuneata were the traits that accounted for the foraging specificity of T. macroceps. The present study investigates the preference of T. macroceps for the flowers and floral extracts of A. cuneata and A. nervosa. The bee visited 10.16 flowers/5 min of A. cuneata. T. macroceps were highly attracted to the flowers of A. cuneata. No bees were attracted to A. nervosa. The floral abundance of A. cuneata was relatively higher compared to A. nervosa. Pollen analysis of foraging bees of T. macroceps revealed the selective preference towards the pollen of A. cuneata. The highest number of bees preferred the extract of A. cuneata (7.75) compared to A. nervosa (0.50) in the Y-olfactory maze. Floral extract of A. cuneata caused the highest neuronal electroantennogram (EAG) response (1.48 mV) than A. nervosa (0.36 mV). Our preliminary studies indicated the presence of specific volatile organic compounds (VOCs) nonacosane (13.26%), hexatriacontane (12.06%), and beta farnesene (6.19%) observed in A. cuneata were absent in congener A. nervosa.

Downloads

Download data is not yet available.

References

Abrol, D.P. (2009). Plant-pollinator interactions in the context of climate change - an endangered mutualism. Journal of Palynology, 45: 1-25.

Armbruster, S.A., Corbet, A.J., Vey, M., Shu-Juan, L. & Shuang-Quan, H. (2013). In the right place at the right time: Parnassia resolves the herkogamy dilemma by accurate repositioning of stamens and stigmas. Annals of Botany, 113: 97-103. DOI: https://doi.org/10.1093/aob/mct261

Blight, M.M., Metayer, M.L., Delegue, M.H.P., Pickett, J.A., Poll, F.P. & Wadhams, L.J. (1997). Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by Honeybees, Apis mellifera. Journal of Chemical Ecology, 23: 1715-1727. DOI: https://doi.org/10.1023/B:JOEC.0000006446.21160.c1

Bronstein, J.L., Alarcon, R. & Geber, M. (2006). The evolution of plant-insect mutualisms. New Phytologist, 172: 412-428. DOI: https://doi.org/10.1111/j.1469-8137.2006.01864.x

Chittka, L. & Raine, N.E. (2006). Recognition of flowers by pollinators. Current Opinions on Plant Biology, 9: 428-35. DOI: https://doi.org/10.1016/j.pbi.2006.05.002

Damon, A. & Roblero, P.S. (2007). A survey of pollination in remnant orchid populations in Soconusco, Chiapas. Tropical Ecology, 48: 1-14.

Dobson, H.E.M., Groth, I. & Bergstrom, G. (1996). Pollen advertisement: chemical contrasts between flower and pollen odors. American Journal of Botany, 83: 877-885. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb12779.x

Dötterl, S. & Vereecken, N.J. (2010). The chemical ecology and evolution of bee-flower interactions: A review and perspectives. Canadian Journal of Zoology, 88: 668-697. doi: 10.1139/Z10-031. DOI: https://doi.org/10.1139/Z10-031

Douglas, A.E. (2008). Conflict, cheats and the persistence of symbioses. New Phytologist, 177: 849-858. DOI: https://doi.org/10.1111/j.1469-8137.2007.02326.x

Dreisig, H. 1995. Ideal free distributions of nectar foraging bumblebees. Oikos, 72: 161-172. DOI: https://doi.org/10.2307/3546218

Ela, M.A., Ali, M., Fohouo, F.N.T. & Messi, J. (2012). The importance of a single floral visit of Eucara macrognatha and Tetralonia fraterna (Hymenoptera: Apidae) in the pollination and the yields of Abelmoschus esculentus in Maroua, Cameroon. African Journal of Agricultural Research, 7: 2853-2857. DOI: https://doi.org/10.5897/AJAR12.359

Engel, M.S. & Baker, D.B. (2006). A New Species of Tetralonia (Thygatina) from India, with Notes on the Oriental Fauna (Hymenoptera: Apidae). American Museum Novitates, 3527: 1-9. DOI: https://doi.org/10.1206/0003-0082(2006)3527[1:ANSOTT]2.0.CO;2

Erdtman, G. (1960). The Acetolysis method. A Revised Description. Svensk Botanisk Tidskrift, 54, 561-564.

Fenster, C.B., Armbruster W.S., Wilson, P., Dudash, M.R. & Thomson, J.D. (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution, and Systematics, 35: 375-403. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132347

George, A.P., Nissen, R.J., Ironside, D.A. & Anderson, P. (1989). Effects of nitidulid beetles on pollination and fruit set of Annona sp. hybrids. Scientia Horticulturae, 39: 289-299. DOI: https://doi.org/10.1016/0304-4238(89)90122-2

Giurfa, M., Vorobyev, M., Kevan, P. & Menzel, R. (1996). Detection of coloured stimuli by honeybees: minimum visual angles and receptor-specific contrasts. Journal of Comparative Physiology A,178: 699-709. DOI: https://doi.org/10.1007/BF00227381

Grass, I., Bohle, V., Tscharntke, T. & Westphal, C. (2018). How plants’ reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere, 9: 2-15. DOI: https://doi.org/10.1002/ecs2.2106

Hori, M. & Namatame, M. (2013). Host plant volatiles responsible for the invasion of Stenotus rubrovittatus (Heteroptera: Miridae) into paddy fields. Journal of Applied Entomology, 137: 340-346. DOI: https://doi.org/10.1111/jen.12001

Karunaratne, W.A.I.P., Edirisinghe, J.P. & Gunatilleke, C.V.S. (2005). Floral relationships of bees in selected areas of Sri Lanka. Ceylon Journal of Science (Biological Science), 34: 27-45.

Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of Royal Society B, Biological Sciences, 274: 303-313. DOI: https://doi.org/10.1098/rspb.2006.3721

Knudsen, J.T., Eriksson, R., Gershenzon, J. & Stihl, B. (2006). Diversity and distribution of floral scent. The Botanical Reviews, 72: 1-120. DOI: https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2

Kunze, J. & Gumbert, A. (2001). The combined effect of color and odor on flower choice behavior of bumblebees in flower mimic systems. Behavioral Ecology, 12: 447-456. DOI: https://doi.org/10.1093/beheco/12.4.447

Kuriya, S., Hattori, M., Nagano, Y. & Itino, T. (2015). Altitudinal flower size variation correlates with local pollinator size in a bumblebee-pollinated herb, Prunella vulgaris L. (Lamiaceae). Journal of Evolutionary Biology, 28: 1761-1769. DOI: https://doi.org/10.1111/jeb.12693

Larue, A.A.C., Raguso, R.A. & Junker, R.R. (2016). Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. Journal of Animal Ecology, 85: 396-408. DOI: https://doi.org/10.1111/1365-2656.12441

Lawson, M.J., Craven, B.A., Paterson, E.G. & Settles, G.S. (2012). A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chemical Senses, 37: 553-566. DOI: https://doi.org/10.1093/chemse/bjs039

Leonard, A.S. & Masek, P. (2014). Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A, 200: 463-74. DOI: https://doi.org/10.1007/s00359-014-0904-4

Leonhardt, S.D., Zeilhofer, S., Bluthgen, N. & Schmitt, T. (2010). Stingless bees use terpenes as olfactory cues to find resin sources. Chemical Senses, 35: 603-611. DOI: https://doi.org/10.1093/chemse/bjq058

Mas, F., Horner, R., Brierley, S., Harper, A. & Suckling, D.M. (2020). The scent of individual foraging bees. Journal of Chemical Ecology, 46: 524-533. DOI: https://doi.org/10.1007/s10886-020-01181-7

Mayer, C., Adler, L., Armbruster, W. S., Dafni, A., Eardley, C., Huang, S.-Q., Kevan P.G., Ollerton, J., Packer, L., Ssymank, A., Stout, J.C. & Potts, S.G. (2011). Pollination ecology in the 21st century: key questions for future research. Journal of Pollination Ecology, 3: 8-23. DOI: https://doi.org/10.26786/1920-7603(2011)1

Michener, C.D., The bees of the world. Baltimore: Johns Hopkins University Press, 2000, xiv + [1] + 913 pp.

Milet-Pinheiro, P., Ayasse, M. & Dötterl, S. (2015). Visual and olfactory floral cues of Campanula (Campanulaceae) and their significance for host recognition by an oligolectic bee pollinator. PLoS One, 10: e0128577. DOI: https://doi.org/10.1371/journal.pone.0128577

Montero, L.S., Garcia, S.C., Rosas, D.A., Crisostomo, J.F.G., Polanco, M.V., Conesa, J.G. & Lopez, L.C. (2018). Pollinator preferences for floral volatiles emitted by dimorphic anthers of a buzz-pollinated herb. Journal of Chemical Ecology, 44: 1058-1067. DOI: https://doi.org/10.1007/s10886-018-1014-5

Muhlemann, J.K., Waelti, M.O., Widmer, A. & Schiestl, F.P. (2006). Post pollination changes in floral odor in Silene latifolia: adaptive mechanisms for seed-predator avoidance? Journal of Chemical Ecology, 32: 1855 1860. DOI: https://doi.org/10.1007/s10886-006-9113-0

Nathan, P.T., Karuppudurai, T., Raghuram, H. & Marimuthu, G. (2009). Bat foraging strategies and pollination of Madhuca latifolia (Sapotaceae) in Southern India. Acta Chiropterologica, 11: 435-441. DOI: https://doi.org/10.3161/150811009X485657

Neff, J.L. & Rozen, J.G. (1995). Foraging and nesting biology of the bee, Anthemurgus passiflorae (Hymenoptera: Apoidea), descriptions of its immature stages, and observations on its floral host (Passifloraceae). American Museum Novitates, 3138: 1-19.

Ollerton, J., Winfree, R. & Tarrant, S. (2011) How many flowering plants are pollinated by animals? Oikos, 120: 321-326. DOI: https://doi.org/10.1111/j.1600-0706.2010.18644.x

Parachnowitsch, A.L., Raguso, R.A. & Kessler, A. (2012). Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytologist, 195: 667-675. DOI: https://doi.org/10.1111/j.1469-8137.2012.04188.x

Pauly, A. (1984). Contribution a I’etude desgenres afrotropicaux de Nomiinae. Revue de Zoologie Africaine, 98: 693-702.

Possingham, H. P. 1992. Habitat selection by 2 species of nectarivore/habitat quality isolines. Ecology, 73: 1903-1912. DOI: https://doi.org/10.2307/1940041

Raguso, R.A. & Willis, M.A. (2005). Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, Manduca sexta. Animal Behavior, 69: 407-418. DOI: https://doi.org/10.1016/j.anbehav.2004.04.015

Reinecke, A., Ruther, J. & Hilker, M. (2005). Electrophysiological and behavioral responses of Melolantha melolantha to saturated and unsaturated aliphatic alcohols. Entomologia Experimentalis et Applicata, 115: 33-40. DOI: https://doi.org/10.1111/j.1570-7458.2005.00274.x

Renoult, J.P., Valido, A., Jordano, P. & Schaefer, H.M. (2014). Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytologist, 201: 678-686. DOI: https://doi.org/10.1111/nph.12539

Riffell, J.A., Alarcon, R., Abrell, J., Davidowitz, G., Bronstein, J.L., Hildebrand, J.G. (2008). Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. Proceedings of the National Academy of Sciences USA, 105: 3404-3409. DOI: https://doi.org/10.1073/pnas.0709811105

Sajad, A. & Saeed, S. (2010). Floral host plant range of Syrphid flies (Syrphidae: Diptera) under natural conditions in Southern Punjab, Pakistan. Pakistan Journal of Botany, 42: 1187-1200.

Salvagnin, U., Malnoy, M., Thöming, G., Tasin, M., Carlin, S., Martens, S., Vrhovsek, U., Angeli, S. & Anfora, G. (2018). Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behavior. Plant Biotechnology Journal, 16: 264-271. DOI: https://doi.org/10.1111/pbi.12767

Shaara, A.H.F. (2014). The foraging behavior of honey bees, Apis mellifera: a review. Veterinarni Medicina, 59: 1-10. DOI: https://doi.org/10.17221/7240-VETMED

Sheppard, C.A. & Oliver, R.A. (2004). Yucca moths and yucca plants: Discovery of the most wonderful case of fertilisation. American Entomologist, 50: 32-46. DOI: https://doi.org/10.1093/ae/50.1.32

Shivalingaswamy, T.M., Amala, U., Gupta, A. & Raghavendra, A. (2020). Non-Apis bee diversity in an experimental pollinator garden in Bengaluru – a Silicon Valley of India. Sociobiology, 67: 593-598. DOI: https://doi.org/10.13102/sociobiology.v67i4.5023

Spaethe, J., Moser, W.H. & Paulus, H.F. (2007). Increase of pollinator attraction by means of a visual signal in the sexually deceptive orchid, Ophrys heldreichii (Orchidaceae). Plant Systematics and Evolution, 264: 31-40. DOI: https://doi.org/10.1007/s00606-006-0503-0

Stang, M., Klinkhamer, P.G.L. & Meijden, E.V.D. (2006). Size constraints and flower abundance determine the number of interactions in a plant flower visitor web. Oikos, 112: 111-121. DOI: https://doi.org/10.1111/j.0030-1299.2006.14199.x

Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., Konaté, S. and Linsenmair, E.K. (2017). Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 7: 17691. DOI: https://doi.org/10.1038/s41598-017-17970-2

Stout, J. (2000). Does size matter? Bumblebee behavior and the pollination of Cytisus scoparius L. (Fabaceae). Apidologie, 31: 129-139. DOI: https://doi.org/10.1051/apido:2000111

Subramanya, S. & Radhamani, T.R. (1993) Pollination by birds and bats. Current Science, 65: 201-209.

Theis, N. & Raguso, R.A. (2005). The effect of pollination on floral fragrance in thistles. Journal of Chemical Ecology, 31: 2581-2600. DOI: https://doi.org/10.1007/s10886-005-7615-9

Vibina, V. & Subaharan, K. (2019). Electrophysiological and behavioral response of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) to fermented coconut sap neera. Journal of Plantation Crops, 47: 82-89.

Zander, E. (1935). Beitrage zur Herkunftsbestimmung bei Honig. I Reichsfachgruppe Imker, Berlin. II. Liedloff. Loth & Michaelis. Leipzig, p. 465.

Downloads

Published

2023-06-29

How to Cite

Udayakumar, A., Anjanappa, R., Subaharan, K., & Shivalingaswamy, T. M. (2023). Foraging specificity of Tetralonia (Thygatina) macroceps (Hymenoptera: Apidae: Anthophorinae) on Argyreia cuneata (Convolvulaceae). Sociobiology, 70(2), e8262. https://doi.org/10.13102/sociobiology.v70i2.8262

Issue

Section

Research Article - Bees

Most read articles by the same author(s)